Machine learning identifies candidates for drug repurposing in Alzheimer’s disease

Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug rep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Steve Rodriguez, Clemens Hug, Petar Todorov, Nienke Moret, Sarah A. Boswell, Kyle Evans, George Zhou, Nathan T. Johnson, Bradley T. Hyman, Peter K. Sorger, Mark W. Albers, Artem Sokolov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:93e763bd3055417ea9c559a7b6fa24d5
record_format dspace
spelling oai:doaj.org-article:93e763bd3055417ea9c559a7b6fa24d52021-12-02T14:03:50ZMachine learning identifies candidates for drug repurposing in Alzheimer’s disease10.1038/s41467-021-21330-02041-1723https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d52021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21330-0https://doaj.org/toc/2041-1723Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug repurposing.Steve RodriguezClemens HugPetar TodorovNienke MoretSarah A. BoswellKyle EvansGeorge ZhouNathan T. JohnsonBradley T. HymanPeter K. SorgerMark W. AlbersArtem SokolovNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Steve Rodriguez
Clemens Hug
Petar Todorov
Nienke Moret
Sarah A. Boswell
Kyle Evans
George Zhou
Nathan T. Johnson
Bradley T. Hyman
Peter K. Sorger
Mark W. Albers
Artem Sokolov
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
description Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug repurposing.
format article
author Steve Rodriguez
Clemens Hug
Petar Todorov
Nienke Moret
Sarah A. Boswell
Kyle Evans
George Zhou
Nathan T. Johnson
Bradley T. Hyman
Peter K. Sorger
Mark W. Albers
Artem Sokolov
author_facet Steve Rodriguez
Clemens Hug
Petar Todorov
Nienke Moret
Sarah A. Boswell
Kyle Evans
George Zhou
Nathan T. Johnson
Bradley T. Hyman
Peter K. Sorger
Mark W. Albers
Artem Sokolov
author_sort Steve Rodriguez
title Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
title_short Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
title_full Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
title_fullStr Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
title_full_unstemmed Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
title_sort machine learning identifies candidates for drug repurposing in alzheimer’s disease
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d5
work_keys_str_mv AT steverodriguez machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT clemenshug machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT petartodorov machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT nienkemoret machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT sarahaboswell machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT kyleevans machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT georgezhou machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT nathantjohnson machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT bradleythyman machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT peterksorger machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT markwalbers machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
AT artemsokolov machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease
_version_ 1718392095966756864