Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug rep...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:93e763bd3055417ea9c559a7b6fa24d5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:93e763bd3055417ea9c559a7b6fa24d52021-12-02T14:03:50ZMachine learning identifies candidates for drug repurposing in Alzheimer’s disease10.1038/s41467-021-21330-02041-1723https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d52021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21330-0https://doaj.org/toc/2041-1723Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug repurposing.Steve RodriguezClemens HugPetar TodorovNienke MoretSarah A. BoswellKyle EvansGeorge ZhouNathan T. JohnsonBradley T. HymanPeter K. SorgerMark W. AlbersArtem SokolovNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Steve Rodriguez Clemens Hug Petar Todorov Nienke Moret Sarah A. Boswell Kyle Evans George Zhou Nathan T. Johnson Bradley T. Hyman Peter K. Sorger Mark W. Albers Artem Sokolov Machine learning identifies candidates for drug repurposing in Alzheimer’s disease |
description |
Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug repurposing. |
format |
article |
author |
Steve Rodriguez Clemens Hug Petar Todorov Nienke Moret Sarah A. Boswell Kyle Evans George Zhou Nathan T. Johnson Bradley T. Hyman Peter K. Sorger Mark W. Albers Artem Sokolov |
author_facet |
Steve Rodriguez Clemens Hug Petar Todorov Nienke Moret Sarah A. Boswell Kyle Evans George Zhou Nathan T. Johnson Bradley T. Hyman Peter K. Sorger Mark W. Albers Artem Sokolov |
author_sort |
Steve Rodriguez |
title |
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease |
title_short |
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease |
title_full |
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease |
title_fullStr |
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease |
title_full_unstemmed |
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease |
title_sort |
machine learning identifies candidates for drug repurposing in alzheimer’s disease |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d5 |
work_keys_str_mv |
AT steverodriguez machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT clemenshug machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT petartodorov machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT nienkemoret machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT sarahaboswell machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT kyleevans machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT georgezhou machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT nathantjohnson machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT bradleythyman machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT peterksorger machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT markwalbers machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease AT artemsokolov machinelearningidentifiescandidatesfordrugrepurposinginalzheimersdisease |
_version_ |
1718392095966756864 |