Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug rep...
Guardado en:
Autores principales: | Steve Rodriguez, Clemens Hug, Petar Todorov, Nienke Moret, Sarah A. Boswell, Kyle Evans, George Zhou, Nathan T. Johnson, Bradley T. Hyman, Peter K. Sorger, Mark W. Albers, Artem Sokolov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Towards Drug Repurposing in Cancer Cachexia: Potential Targets and Candidates
por: Joana M. O. Santos, et al.
Publicado: (2021) -
A method for the rational selection of drug repurposing candidates from multimodal knowledge harmonization
por: Bruce Schultz, et al.
Publicado: (2021) -
Strategies to identify candidate repurposable drugs: COVID-19 treatment as a case example
por: Ali S. Imami, et al.
Publicado: (2021) -
Repurposing tRNAs for nonsense suppression
por: Suki Albers, et al.
Publicado: (2021) -
Can an FDA-Approved Alzheimer’s Drug Be Repurposed for Alleviating Neuronal Symptoms of Zika Virus?
por: Devika Sirohi, et al.
Publicado: (2017)