Efficient electromagnetic transducers for spin-wave devices
Abstract This paper presents a system-level efficiency analysis, a rapid design methodology, and a numerical demonstration of efficient sub-micron, spin-wave transducers in a microwave system. Applications such as Boolean spintronics, analog spin-wave-computing, and magnetic microwave circuits are e...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93eec54cdf254947a56570d71cd8750d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:93eec54cdf254947a56570d71cd8750d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:93eec54cdf254947a56570d71cd8750d2021-12-02T15:15:44ZEfficient electromagnetic transducers for spin-wave devices10.1038/s41598-021-97627-32045-2322https://doaj.org/article/93eec54cdf254947a56570d71cd8750d2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97627-3https://doaj.org/toc/2045-2322Abstract This paper presents a system-level efficiency analysis, a rapid design methodology, and a numerical demonstration of efficient sub-micron, spin-wave transducers in a microwave system. Applications such as Boolean spintronics, analog spin-wave-computing, and magnetic microwave circuits are expected to benefit from this analysis and design approach. These applications have the potential to provide a low-power, magnetic paradigm alternative to modern electronic systems, but they have been stymied by a limited understanding of the microwave, system-level design for spin-wave circuits. This paper proposes an end-to-end microwave/spin-wave system model that permits the use of classical microwave network analysis and matching theory towards analyzing and designing efficient transduction systems. This paper further compares magnetostatic-wave transducer theory to electromagnetic simulations and finds close agreement, indicating that the theory, despite simplifying assumptions, is useful for rapid yet accurate transducer design. It further suggests that the theory, when modified to include the exchange interaction, will also be useful to rapidly and accurately design transducers launching magnons at exchange wavelengths. Comparisons are made between microstrip and co-planar waveguide lines, which are expedient, narrowband, and low-efficiency transducers, and grating and meander lines that are capable of high-efficiency and wideband performance. The paper concludes that efficient microwave-to-spin-wave transducers are possible and presents a meander transducer design on YIG capable of launching $$\varvec{\lambda = 500}\,$$ λ = 500 nm spin waves with an efficiency of − 4.45 dB and a 3 dB-bandwidth of 134 MHz.David A. ConnellyGyorgy CsabaHadrian Renaldo O. AquinoGary H. BernsteinAlexei OrlovWolfgang PorodJonathan ChisumNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q David A. Connelly Gyorgy Csaba Hadrian Renaldo O. Aquino Gary H. Bernstein Alexei Orlov Wolfgang Porod Jonathan Chisum Efficient electromagnetic transducers for spin-wave devices |
description |
Abstract This paper presents a system-level efficiency analysis, a rapid design methodology, and a numerical demonstration of efficient sub-micron, spin-wave transducers in a microwave system. Applications such as Boolean spintronics, analog spin-wave-computing, and magnetic microwave circuits are expected to benefit from this analysis and design approach. These applications have the potential to provide a low-power, magnetic paradigm alternative to modern electronic systems, but they have been stymied by a limited understanding of the microwave, system-level design for spin-wave circuits. This paper proposes an end-to-end microwave/spin-wave system model that permits the use of classical microwave network analysis and matching theory towards analyzing and designing efficient transduction systems. This paper further compares magnetostatic-wave transducer theory to electromagnetic simulations and finds close agreement, indicating that the theory, despite simplifying assumptions, is useful for rapid yet accurate transducer design. It further suggests that the theory, when modified to include the exchange interaction, will also be useful to rapidly and accurately design transducers launching magnons at exchange wavelengths. Comparisons are made between microstrip and co-planar waveguide lines, which are expedient, narrowband, and low-efficiency transducers, and grating and meander lines that are capable of high-efficiency and wideband performance. The paper concludes that efficient microwave-to-spin-wave transducers are possible and presents a meander transducer design on YIG capable of launching $$\varvec{\lambda = 500}\,$$ λ = 500 nm spin waves with an efficiency of − 4.45 dB and a 3 dB-bandwidth of 134 MHz. |
format |
article |
author |
David A. Connelly Gyorgy Csaba Hadrian Renaldo O. Aquino Gary H. Bernstein Alexei Orlov Wolfgang Porod Jonathan Chisum |
author_facet |
David A. Connelly Gyorgy Csaba Hadrian Renaldo O. Aquino Gary H. Bernstein Alexei Orlov Wolfgang Porod Jonathan Chisum |
author_sort |
David A. Connelly |
title |
Efficient electromagnetic transducers for spin-wave devices |
title_short |
Efficient electromagnetic transducers for spin-wave devices |
title_full |
Efficient electromagnetic transducers for spin-wave devices |
title_fullStr |
Efficient electromagnetic transducers for spin-wave devices |
title_full_unstemmed |
Efficient electromagnetic transducers for spin-wave devices |
title_sort |
efficient electromagnetic transducers for spin-wave devices |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/93eec54cdf254947a56570d71cd8750d |
work_keys_str_mv |
AT davidaconnelly efficientelectromagnetictransducersforspinwavedevices AT gyorgycsaba efficientelectromagnetictransducersforspinwavedevices AT hadrianrenaldooaquino efficientelectromagnetictransducersforspinwavedevices AT garyhbernstein efficientelectromagnetictransducersforspinwavedevices AT alexeiorlov efficientelectromagnetictransducersforspinwavedevices AT wolfgangporod efficientelectromagnetictransducersforspinwavedevices AT jonathanchisum efficientelectromagnetictransducersforspinwavedevices |
_version_ |
1718387522543812608 |