Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production
Reducing the use of chemical fertilizers in agriculture is one of the EU Green Deal’s priorities. Since poultry production is increasing worldwide, stabilized poultry litter such as composted pelletized poultry litter (CPPL) is an alternative fertilizer option. On the contrary, compared to chemical...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93f1d668d0a24cb1aac6a380c4db91c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Reducing the use of chemical fertilizers in agriculture is one of the EU Green Deal’s priorities. Since poultry production is increasing worldwide, stabilized poultry litter such as composted pelletized poultry litter (CPPL) is an alternative fertilizer option. On the contrary, compared to chemical fertilizers, the environmental impacts of composted products have not been adequately studied, and no data are currently available for CPPL produced by a closed composting system, such as the Hosoya system. The aim of this research was to assess the role of CPPL as a potential alternative for chemical fertilizer by evaluating the environmental impact of CPPL production via the Hosoya system using common chemical fertilizers. Based on life cycle assessment (LCA), the environmental impact (11 impact categories) was determined for the production of 1 kg of fertilizer, as well as for the production of 1 kg of active substances (nitrogen (N), phosphorus pentoxide (P<sub>2</sub>O<sub>5</sub>), and potassium chloride (K<sub>2</sub>O)) and the theoretical nutrient (NPK) supply of a 100 ha field with CPPL and several chemical fertilizer options. The production of CPPL per kilogram was smaller than that of the chemical fertilizers; however, the environmental impact of chemical fertilizer production per kilogram of active substance (N, P<sub>2</sub>O<sub>5</sub>, or K<sub>2</sub>O) was lower for most impact categories, because the active substance was available at higher concentrations in said chemical fertilizers. In contrast, the NPK supply of a 100 ha field by CPPL was found to possess a smaller environmental impact compared to several combinations of chemical fertilizers. In conclusion, CPPL demonstrated its suitability as an alternative to chemical fertilizers. |
---|