Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning

Forecasting the state of health and remaining useful life of batteries is a challenge that limits technologies such as electric vehicles. Here, the authors build an accurate battery performance forecasting system using machine learning.

Guardado en:
Detalles Bibliográficos
Autores principales: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha A. Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/93fa48473c6748549ce982ee1772b3cf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:93fa48473c6748549ce982ee1772b3cf
record_format dspace
spelling oai:doaj.org-article:93fa48473c6748549ce982ee1772b3cf2021-12-02T14:42:29ZIdentifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning10.1038/s41467-020-15235-72041-1723https://doaj.org/article/93fa48473c6748549ce982ee1772b3cf2020-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15235-7https://doaj.org/toc/2041-1723Forecasting the state of health and remaining useful life of batteries is a challenge that limits technologies such as electric vehicles. Here, the authors build an accurate battery performance forecasting system using machine learning.Yunwei ZhangQiaochu TangYao ZhangJiabin WangUlrich StimmingAlpha A. LeeNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-6 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yunwei Zhang
Qiaochu Tang
Yao Zhang
Jiabin Wang
Ulrich Stimming
Alpha A. Lee
Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
description Forecasting the state of health and remaining useful life of batteries is a challenge that limits technologies such as electric vehicles. Here, the authors build an accurate battery performance forecasting system using machine learning.
format article
author Yunwei Zhang
Qiaochu Tang
Yao Zhang
Jiabin Wang
Ulrich Stimming
Alpha A. Lee
author_facet Yunwei Zhang
Qiaochu Tang
Yao Zhang
Jiabin Wang
Ulrich Stimming
Alpha A. Lee
author_sort Yunwei Zhang
title Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_short Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_full Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_fullStr Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_full_unstemmed Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
title_sort identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/93fa48473c6748549ce982ee1772b3cf
work_keys_str_mv AT yunweizhang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT qiaochutang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT yaozhang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT jiabinwang identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT ulrichstimming identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
AT alphaalee identifyingdegradationpatternsoflithiumionbatteriesfromimpedancespectroscopyusingmachinelearning
_version_ 1718389702805946368