Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation.
As a powerful tool in hyperspectral image (HSI) classification, sparse representation has gained much attention in recent years owing to its detailed representation of features. In particular, the results of the joint use of spatial and spectral information has been widely applied to HSI classificat...
Guardado en:
Autores principales: | Eryang Chen, Ruichun Chang, Ke Guo, Fang Miao, Kaibo Shi, Ansheng Ye, Jianghong Yuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93fc8546a12e4543b71ab8e3d8001103 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sparse Graph Learning Under Laplacian-Related Constraints
por: Jitendra K. Tugnait
Publicado: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
por: Fan Li
Publicado: (2021) -
New bounds on the distance Laplacian and distance signless Laplacian spectral radii
por: Díaz,Roberto C., et al.
Publicado: (2019) -
Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
por: Wen Shi, et al.
Publicado: (2020)