Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation.
As a powerful tool in hyperspectral image (HSI) classification, sparse representation has gained much attention in recent years owing to its detailed representation of features. In particular, the results of the joint use of spatial and spectral information has been widely applied to HSI classificat...
Enregistré dans:
Auteurs principaux: | Eryang Chen, Ruichun Chang, Ke Guo, Fang Miao, Kaibo Shi, Ansheng Ye, Jianghong Yuan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/93fc8546a12e4543b71ab8e3d8001103 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Sparse Graph Learning Under Laplacian-Related Constraints
par: Jitendra K. Tugnait
Publié: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
par: Lulu Wan, et autres
Publié: (2021) -
Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
par: Fan Li
Publié: (2021) -
New bounds on the distance Laplacian and distance signless Laplacian spectral radii
par: Díaz,Roberto C., et autres
Publié: (2019) -
Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
par: Wen Shi, et autres
Publié: (2020)