Towards a Clustering Guided Hierarchical Framework for Sensor-Based Activity Recognition
Human activity recognition plays a prominent role in numerous applications like smart homes, elderly healthcare and ambient intelligence. The complexity of human behavior leads to the difficulty of developing an accurate activity recognizer, especially in situations where different activities have s...
Guardado en:
Autores principales: | Aiguo Wang, Shenghui Zhao, Huan-Chao Keh, Guilin Chen, Diptendu Sinha Roy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94005bbe08c8412da2d245ad5794c8ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inertial measurement unit based human action recognition for soft-robotic exoskeletons
por: Moritz Burgdorff, et al.
Publicado: (2021) -
High Security Finger Vein Recognition Based on Robust Keypoint Correspondence Clustering
por: Guang Zhang, et al.
Publicado: (2021) -
Human Activity Recognition: literature Review
por: mais irreem atheed, et al.
Publicado: (2021) -
Body Temperature Monitoring for Regular COVID-19 Prevention Based on Human Daily Activity Recognition
por: Lei Zhang, et al.
Publicado: (2021) -
Emotion Recognition Using a Glasses-Type Wearable Device via Multi-Channel Facial Responses
por: Jangho Kwon, et al.
Publicado: (2021)