Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink
Abstract Carbon allocation is one of the most important physiological processes to optimize the plant growth, which exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. However, it remains unclear how the carbon allocation p...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94116dbccd7e43fcbd58584236a54d75 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:94116dbccd7e43fcbd58584236a54d75 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:94116dbccd7e43fcbd58584236a54d752021-12-02T12:32:58ZAdaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink10.1038/s41598-017-03574-32045-2322https://doaj.org/article/94116dbccd7e43fcbd58584236a54d752017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03574-3https://doaj.org/toc/2045-2322Abstract Carbon allocation is one of the most important physiological processes to optimize the plant growth, which exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. However, it remains unclear how the carbon allocation pattern has changed at global scale and impacted terrestrial carbon uptake. Based on the Community Atmosphere Biosphere Land Exchange (CABLE) model, this study shows the increasing partitioning ratios to leaf and wood and reducing ratio to root globally from 1979 to 2014. The results imply the plant optimizes carbon allocation and reaches its maximum growth by allocating more newly acquired photosynthate to leaves and wood tissues. Thus, terrestrial vegetation has absorbed 16% more carbon averagely between 1979 and 2014 through adjusting their carbon allocation process. Compared with the fixed carbon allocation simulation, the trend of terrestrial carbon sink from 1979 to 2014 increased by 34% in the adaptive carbon allocation simulation. Our study highlights carbon allocation, associated with climate change, needs to be mapped and incorporated into terrestrial carbon cycle estimates.Jiangzhou XiaWenping YuanYing-Ping WangQuanguo ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jiangzhou Xia Wenping Yuan Ying-Ping Wang Quanguo Zhang Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink |
description |
Abstract Carbon allocation is one of the most important physiological processes to optimize the plant growth, which exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. However, it remains unclear how the carbon allocation pattern has changed at global scale and impacted terrestrial carbon uptake. Based on the Community Atmosphere Biosphere Land Exchange (CABLE) model, this study shows the increasing partitioning ratios to leaf and wood and reducing ratio to root globally from 1979 to 2014. The results imply the plant optimizes carbon allocation and reaches its maximum growth by allocating more newly acquired photosynthate to leaves and wood tissues. Thus, terrestrial vegetation has absorbed 16% more carbon averagely between 1979 and 2014 through adjusting their carbon allocation process. Compared with the fixed carbon allocation simulation, the trend of terrestrial carbon sink from 1979 to 2014 increased by 34% in the adaptive carbon allocation simulation. Our study highlights carbon allocation, associated with climate change, needs to be mapped and incorporated into terrestrial carbon cycle estimates. |
format |
article |
author |
Jiangzhou Xia Wenping Yuan Ying-Ping Wang Quanguo Zhang |
author_facet |
Jiangzhou Xia Wenping Yuan Ying-Ping Wang Quanguo Zhang |
author_sort |
Jiangzhou Xia |
title |
Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink |
title_short |
Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink |
title_full |
Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink |
title_fullStr |
Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink |
title_full_unstemmed |
Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink |
title_sort |
adaptive carbon allocation by plants enhances the terrestrial carbon sink |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/94116dbccd7e43fcbd58584236a54d75 |
work_keys_str_mv |
AT jiangzhouxia adaptivecarbonallocationbyplantsenhancestheterrestrialcarbonsink AT wenpingyuan adaptivecarbonallocationbyplantsenhancestheterrestrialcarbonsink AT yingpingwang adaptivecarbonallocationbyplantsenhancestheterrestrialcarbonsink AT quanguozhang adaptivecarbonallocationbyplantsenhancestheterrestrialcarbonsink |
_version_ |
1718393933739851776 |