Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization

Traditional <inline-formula> <tex-math notation="LaTeX">$\ell _{1}$ </tex-math></inline-formula>-regularized compressed sensing magnetic resonance imaging (CS-MRI) model tends to underestimate the fine textures and edges of the MR image, which play important roles i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jincheng Li, Jinlan Li, Zhaoyang Xie, Jian Zou
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/94148e7094c340a1a2dbec9f09b9027a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:94148e7094c340a1a2dbec9f09b9027a
record_format dspace
spelling oai:doaj.org-article:94148e7094c340a1a2dbec9f09b9027a2021-11-18T00:10:55ZPlug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization2169-353610.1109/ACCESS.2021.3124600https://doaj.org/article/94148e7094c340a1a2dbec9f09b9027a2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9597555/https://doaj.org/toc/2169-3536Traditional <inline-formula> <tex-math notation="LaTeX">$\ell _{1}$ </tex-math></inline-formula>-regularized compressed sensing magnetic resonance imaging (CS-MRI) model tends to underestimate the fine textures and edges of the MR image, which play important roles in clinical diagnosis. In contrast, the convex nonconvex (CNC) strategy allows the use of nonconvex regularization while maintaining the convexity of the total objective function. Plug-and-play (PnP) algorithm is a powerful framework for sparse regularization problems, which plug any advanced denoiser into traditional proximal algorithms. In this paper, we propose a PnP-ADMM algorithm for CS-MRI reconstruction with CNC sparse regularization. We first obtain the proximal operator for CNC sparse regularization. Then we present PnP-ADMM algorithm by replacing the proximal operator of ADMM with properly pre-trained denoisers. Furthermore, we conduct comparison experiments using various denoisers under different sampling templates for different images. The experimental results verify the effectiveness of the proposed algorithm with both numerical criteria and visual effects.Jincheng LiJinlan LiZhaoyang XieJian ZouIEEEarticlePlug-and-play methodADMMconvex nonconvex sparse regularizationcompressed sensingMRI reconstructionElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 148315-148324 (2021)
institution DOAJ
collection DOAJ
language EN
topic Plug-and-play method
ADMM
convex nonconvex sparse regularization
compressed sensing
MRI reconstruction
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Plug-and-play method
ADMM
convex nonconvex sparse regularization
compressed sensing
MRI reconstruction
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Jincheng Li
Jinlan Li
Zhaoyang Xie
Jian Zou
Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
description Traditional <inline-formula> <tex-math notation="LaTeX">$\ell _{1}$ </tex-math></inline-formula>-regularized compressed sensing magnetic resonance imaging (CS-MRI) model tends to underestimate the fine textures and edges of the MR image, which play important roles in clinical diagnosis. In contrast, the convex nonconvex (CNC) strategy allows the use of nonconvex regularization while maintaining the convexity of the total objective function. Plug-and-play (PnP) algorithm is a powerful framework for sparse regularization problems, which plug any advanced denoiser into traditional proximal algorithms. In this paper, we propose a PnP-ADMM algorithm for CS-MRI reconstruction with CNC sparse regularization. We first obtain the proximal operator for CNC sparse regularization. Then we present PnP-ADMM algorithm by replacing the proximal operator of ADMM with properly pre-trained denoisers. Furthermore, we conduct comparison experiments using various denoisers under different sampling templates for different images. The experimental results verify the effectiveness of the proposed algorithm with both numerical criteria and visual effects.
format article
author Jincheng Li
Jinlan Li
Zhaoyang Xie
Jian Zou
author_facet Jincheng Li
Jinlan Li
Zhaoyang Xie
Jian Zou
author_sort Jincheng Li
title Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
title_short Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
title_full Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
title_fullStr Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
title_full_unstemmed Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
title_sort plug-and-play admm for mri reconstruction with convex nonconvex sparse regularization
publisher IEEE
publishDate 2021
url https://doaj.org/article/94148e7094c340a1a2dbec9f09b9027a
work_keys_str_mv AT jinchengli plugandplayadmmformrireconstructionwithconvexnonconvexsparseregularization
AT jinlanli plugandplayadmmformrireconstructionwithconvexnonconvexsparseregularization
AT zhaoyangxie plugandplayadmmformrireconstructionwithconvexnonconvexsparseregularization
AT jianzou plugandplayadmmformrireconstructionwithconvexnonconvexsparseregularization
_version_ 1718425178830012416