An efficient analytical reduction of detailed nonlinear neuron models

Realistic simulations of neurons and neural networks are key for understanding neural computations. Here the authors describe Neuron_Reduce, an analytic approach to simplify neurons receiving thousands of synapses and accelerate their simulations by 40–250 folds, while preserving voltage dynamics an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Oren Amsalem, Guy Eyal, Noa Rogozinski, Michael Gevaert, Pramod Kumbhar, Felix Schürmann, Idan Segev
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/942319641ed7409a8a1dadc85babcf06
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:942319641ed7409a8a1dadc85babcf06
record_format dspace
spelling oai:doaj.org-article:942319641ed7409a8a1dadc85babcf062021-12-02T17:31:10ZAn efficient analytical reduction of detailed nonlinear neuron models10.1038/s41467-019-13932-62041-1723https://doaj.org/article/942319641ed7409a8a1dadc85babcf062020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13932-6https://doaj.org/toc/2041-1723Realistic simulations of neurons and neural networks are key for understanding neural computations. Here the authors describe Neuron_Reduce, an analytic approach to simplify neurons receiving thousands of synapses and accelerate their simulations by 40–250 folds, while preserving voltage dynamics and dendritic computations.Oren AmsalemGuy EyalNoa RogozinskiMichael GevaertPramod KumbharFelix SchürmannIdan SegevNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Oren Amsalem
Guy Eyal
Noa Rogozinski
Michael Gevaert
Pramod Kumbhar
Felix Schürmann
Idan Segev
An efficient analytical reduction of detailed nonlinear neuron models
description Realistic simulations of neurons and neural networks are key for understanding neural computations. Here the authors describe Neuron_Reduce, an analytic approach to simplify neurons receiving thousands of synapses and accelerate their simulations by 40–250 folds, while preserving voltage dynamics and dendritic computations.
format article
author Oren Amsalem
Guy Eyal
Noa Rogozinski
Michael Gevaert
Pramod Kumbhar
Felix Schürmann
Idan Segev
author_facet Oren Amsalem
Guy Eyal
Noa Rogozinski
Michael Gevaert
Pramod Kumbhar
Felix Schürmann
Idan Segev
author_sort Oren Amsalem
title An efficient analytical reduction of detailed nonlinear neuron models
title_short An efficient analytical reduction of detailed nonlinear neuron models
title_full An efficient analytical reduction of detailed nonlinear neuron models
title_fullStr An efficient analytical reduction of detailed nonlinear neuron models
title_full_unstemmed An efficient analytical reduction of detailed nonlinear neuron models
title_sort efficient analytical reduction of detailed nonlinear neuron models
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/942319641ed7409a8a1dadc85babcf06
work_keys_str_mv AT orenamsalem anefficientanalyticalreductionofdetailednonlinearneuronmodels
AT guyeyal anefficientanalyticalreductionofdetailednonlinearneuronmodels
AT noarogozinski anefficientanalyticalreductionofdetailednonlinearneuronmodels
AT michaelgevaert anefficientanalyticalreductionofdetailednonlinearneuronmodels
AT pramodkumbhar anefficientanalyticalreductionofdetailednonlinearneuronmodels
AT felixschurmann anefficientanalyticalreductionofdetailednonlinearneuronmodels
AT idansegev anefficientanalyticalreductionofdetailednonlinearneuronmodels
AT orenamsalem efficientanalyticalreductionofdetailednonlinearneuronmodels
AT guyeyal efficientanalyticalreductionofdetailednonlinearneuronmodels
AT noarogozinski efficientanalyticalreductionofdetailednonlinearneuronmodels
AT michaelgevaert efficientanalyticalreductionofdetailednonlinearneuronmodels
AT pramodkumbhar efficientanalyticalreductionofdetailednonlinearneuronmodels
AT felixschurmann efficientanalyticalreductionofdetailednonlinearneuronmodels
AT idansegev efficientanalyticalreductionofdetailednonlinearneuronmodels
_version_ 1718380686083096576