An efficient analytical reduction of detailed nonlinear neuron models
Realistic simulations of neurons and neural networks are key for understanding neural computations. Here the authors describe Neuron_Reduce, an analytic approach to simplify neurons receiving thousands of synapses and accelerate their simulations by 40–250 folds, while preserving voltage dynamics an...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/942319641ed7409a8a1dadc85babcf06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:942319641ed7409a8a1dadc85babcf06 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:942319641ed7409a8a1dadc85babcf062021-12-02T17:31:10ZAn efficient analytical reduction of detailed nonlinear neuron models10.1038/s41467-019-13932-62041-1723https://doaj.org/article/942319641ed7409a8a1dadc85babcf062020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13932-6https://doaj.org/toc/2041-1723Realistic simulations of neurons and neural networks are key for understanding neural computations. Here the authors describe Neuron_Reduce, an analytic approach to simplify neurons receiving thousands of synapses and accelerate their simulations by 40–250 folds, while preserving voltage dynamics and dendritic computations.Oren AmsalemGuy EyalNoa RogozinskiMichael GevaertPramod KumbharFelix SchürmannIdan SegevNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Oren Amsalem Guy Eyal Noa Rogozinski Michael Gevaert Pramod Kumbhar Felix Schürmann Idan Segev An efficient analytical reduction of detailed nonlinear neuron models |
description |
Realistic simulations of neurons and neural networks are key for understanding neural computations. Here the authors describe Neuron_Reduce, an analytic approach to simplify neurons receiving thousands of synapses and accelerate their simulations by 40–250 folds, while preserving voltage dynamics and dendritic computations. |
format |
article |
author |
Oren Amsalem Guy Eyal Noa Rogozinski Michael Gevaert Pramod Kumbhar Felix Schürmann Idan Segev |
author_facet |
Oren Amsalem Guy Eyal Noa Rogozinski Michael Gevaert Pramod Kumbhar Felix Schürmann Idan Segev |
author_sort |
Oren Amsalem |
title |
An efficient analytical reduction of detailed nonlinear neuron models |
title_short |
An efficient analytical reduction of detailed nonlinear neuron models |
title_full |
An efficient analytical reduction of detailed nonlinear neuron models |
title_fullStr |
An efficient analytical reduction of detailed nonlinear neuron models |
title_full_unstemmed |
An efficient analytical reduction of detailed nonlinear neuron models |
title_sort |
efficient analytical reduction of detailed nonlinear neuron models |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/942319641ed7409a8a1dadc85babcf06 |
work_keys_str_mv |
AT orenamsalem anefficientanalyticalreductionofdetailednonlinearneuronmodels AT guyeyal anefficientanalyticalreductionofdetailednonlinearneuronmodels AT noarogozinski anefficientanalyticalreductionofdetailednonlinearneuronmodels AT michaelgevaert anefficientanalyticalreductionofdetailednonlinearneuronmodels AT pramodkumbhar anefficientanalyticalreductionofdetailednonlinearneuronmodels AT felixschurmann anefficientanalyticalreductionofdetailednonlinearneuronmodels AT idansegev anefficientanalyticalreductionofdetailednonlinearneuronmodels AT orenamsalem efficientanalyticalreductionofdetailednonlinearneuronmodels AT guyeyal efficientanalyticalreductionofdetailednonlinearneuronmodels AT noarogozinski efficientanalyticalreductionofdetailednonlinearneuronmodels AT michaelgevaert efficientanalyticalreductionofdetailednonlinearneuronmodels AT pramodkumbhar efficientanalyticalreductionofdetailednonlinearneuronmodels AT felixschurmann efficientanalyticalreductionofdetailednonlinearneuronmodels AT idansegev efficientanalyticalreductionofdetailednonlinearneuronmodels |
_version_ |
1718380686083096576 |