An efficient analytical reduction of detailed nonlinear neuron models
Realistic simulations of neurons and neural networks are key for understanding neural computations. Here the authors describe Neuron_Reduce, an analytic approach to simplify neurons receiving thousands of synapses and accelerate their simulations by 40–250 folds, while preserving voltage dynamics an...
Guardado en:
Autores principales: | Oren Amsalem, Guy Eyal, Noa Rogozinski, Michael Gevaert, Pramod Kumbhar, Felix Schürmann, Idan Segev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/942319641ed7409a8a1dadc85babcf06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons.
por: Eilam Goldenberg Leleo, et al.
Publicado: (2021) -
Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons
por: Eilam Goldenberg Leleo, et al.
Publicado: (2021) -
Systematic generation of biophysically detailed models for diverse cortical neuron types
por: Nathan W. Gouwens, et al.
Publicado: (2018) -
Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference
por: Laura J. Corbin, et al.
Publicado: (2018) -
NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail.
por: Padraig Gleeson, et al.
Publicado: (2010)