Improved inference of gene regulatory networks through integrated Bayesian clustering and dynamic modeling of time-course expression data.
Inferring gene regulatory networks from expression data is difficult, but it is common and often useful. Most network problems are under-determined--there are more parameters than data points--and therefore data or parameter set reduction is often necessary. Correlation between variables in the mode...
Guardado en:
Autor principal: | Brian Godsey |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9429b2263584432a9127019557ae603b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
To integrate or not to integrate: Temporal dynamics of hierarchical Bayesian causal inference.
por: Máté Aller, et al.
Publicado: (2019) -
Dynamic Bayesian Networks for Integrating Multi-omics Time Series Microbiome Data
por: Daniel Ruiz-Perez, et al.
Publicado: (2021) -
Intracellular and Intercellular Gene Regulatory Network Inference From Time-Course Individual RNA-Seq
por: Makoto Kashima, et al.
Publicado: (2021) -
The neural dynamics of hierarchical Bayesian causal inference in multisensory perception
por: Tim Rohe, et al.
Publicado: (2019) -
Bayesian inference of population prevalence
por: Robin AA Ince, et al.
Publicado: (2021)