On the stiffness of surfaces with non-Gaussian height distribution
Abstract In this work, the stiffness, i.e., the derivative of the load-separation curve, is studied for self-affine fractal surfaces with non-Gaussian height distribution. In particular, the heights of the surfaces are assumed to follow a Weibull distribution. We find that a linear relation between...
Guardado en:
Autores principales: | Francesc Pérez-Ràfols, Andreas Almqvist |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/943f5058177a4b27b56e5abc293a1f25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The influence of statistical properties of Fourier coefficients on random Gaussian surfaces
por: C. P. de Castro, et al.
Publicado: (2017) -
Author Correction: Non-Gaussian tail in the force distribution: a hallmark of correlated disorder in the host media of elastic objects
por: Jazmín Aragón Sánchez, et al.
Publicado: (2021) -
From diffusion in compartmentalized media to non-Gaussian random walks
por: Jakub Ślęzak, et al.
Publicado: (2021) -
Interfacial contact stiffness of fractal rough surfaces
por: Dayi Zhang, et al.
Publicado: (2017) -
Development of PUFF–Gaussian dispersion model for the prediction of atmospheric distribution of particle concentration
por: Jooyong Lee, et al.
Publicado: (2021)