Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>

ABSTRACT Macrophage activation involves metabolic reprogramming to support antimicrobial cellular functions. How these metabolic shifts influence the outcome of infection by intracellular pathogens remains incompletely understood. Mycobacterium tuberculosis (Mtb) modulates host metabolic pathways an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pallavi Chandra, Li He, Matthew Zimmerman, Guozhe Yang, Stefan Köster, Mireille Ouimet, Han Wang, Kathyrn J. Moore, Véronique Dartois, Joel D. Schilling, Jennifer A. Philips
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/9440bf7fd7254ee79c47ed8d7a264eb2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9440bf7fd7254ee79c47ed8d7a264eb2
record_format dspace
spelling oai:doaj.org-article:9440bf7fd7254ee79c47ed8d7a264eb22021-11-15T15:56:44ZInhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>10.1128/mBio.01139-202150-7511https://doaj.org/article/9440bf7fd7254ee79c47ed8d7a264eb22020-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01139-20https://doaj.org/toc/2150-7511ABSTRACT Macrophage activation involves metabolic reprogramming to support antimicrobial cellular functions. How these metabolic shifts influence the outcome of infection by intracellular pathogens remains incompletely understood. Mycobacterium tuberculosis (Mtb) modulates host metabolic pathways and utilizes host nutrients, including cholesterol and fatty acids, to survive within macrophages. We found that intracellular growth of Mtb depends on host fatty acid catabolism: when host fatty acid β-oxidation (FAO) was blocked chemically with trimetazidine, a compound in clinical use, or genetically by deletion of the mitochondrial fatty acid transporter carnitine palmitoyltransferase 2 (CPT2), Mtb failed to grow in macrophages, and its growth was attenuated in mice. Mechanistic studies support a model in which inhibition of FAO generates mitochondrial reactive oxygen species, which enhance macrophage NADPH oxidase and xenophagy activity to better control Mtb infection. Thus, FAO inhibition promotes key antimicrobial functions of macrophages and overcomes immune evasion mechanisms of Mtb. IMPORTANCE Mycobacterium tuberculosis (Mtb) is the leading infectious disease killer worldwide. We discovered that intracellular Mtb fails to grow in macrophages in which fatty acid β-oxidation (FAO) is blocked. Macrophages treated with FAO inhibitors rapidly generate a burst of mitochondria-derived reactive oxygen species, which promotes NADPH oxidase recruitment and autophagy to limit the growth of Mtb. Furthermore, we demonstrate the ability of trimetazidine to reduce pathogen burden in mice infected with Mtb. These studies will add to the knowledge of how host metabolism modulates Mtb infection outcomes.Pallavi ChandraLi HeMatthew ZimmermanGuozhe YangStefan KösterMireille OuimetHan WangKathyrn J. MooreVéronique DartoisJoel D. SchillingJennifer A. PhilipsAmerican Society for MicrobiologyarticleMycobacterium tuberculosisNADPH oxidasefatty acid oxidationinnate immunitymacrophagesmitochondrial metabolismMicrobiologyQR1-502ENmBio, Vol 11, Iss 4 (2020)
institution DOAJ
collection DOAJ
language EN
topic Mycobacterium tuberculosis
NADPH oxidase
fatty acid oxidation
innate immunity
macrophages
mitochondrial metabolism
Microbiology
QR1-502
spellingShingle Mycobacterium tuberculosis
NADPH oxidase
fatty acid oxidation
innate immunity
macrophages
mitochondrial metabolism
Microbiology
QR1-502
Pallavi Chandra
Li He
Matthew Zimmerman
Guozhe Yang
Stefan Köster
Mireille Ouimet
Han Wang
Kathyrn J. Moore
Véronique Dartois
Joel D. Schilling
Jennifer A. Philips
Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
description ABSTRACT Macrophage activation involves metabolic reprogramming to support antimicrobial cellular functions. How these metabolic shifts influence the outcome of infection by intracellular pathogens remains incompletely understood. Mycobacterium tuberculosis (Mtb) modulates host metabolic pathways and utilizes host nutrients, including cholesterol and fatty acids, to survive within macrophages. We found that intracellular growth of Mtb depends on host fatty acid catabolism: when host fatty acid β-oxidation (FAO) was blocked chemically with trimetazidine, a compound in clinical use, or genetically by deletion of the mitochondrial fatty acid transporter carnitine palmitoyltransferase 2 (CPT2), Mtb failed to grow in macrophages, and its growth was attenuated in mice. Mechanistic studies support a model in which inhibition of FAO generates mitochondrial reactive oxygen species, which enhance macrophage NADPH oxidase and xenophagy activity to better control Mtb infection. Thus, FAO inhibition promotes key antimicrobial functions of macrophages and overcomes immune evasion mechanisms of Mtb. IMPORTANCE Mycobacterium tuberculosis (Mtb) is the leading infectious disease killer worldwide. We discovered that intracellular Mtb fails to grow in macrophages in which fatty acid β-oxidation (FAO) is blocked. Macrophages treated with FAO inhibitors rapidly generate a burst of mitochondria-derived reactive oxygen species, which promotes NADPH oxidase recruitment and autophagy to limit the growth of Mtb. Furthermore, we demonstrate the ability of trimetazidine to reduce pathogen burden in mice infected with Mtb. These studies will add to the knowledge of how host metabolism modulates Mtb infection outcomes.
format article
author Pallavi Chandra
Li He
Matthew Zimmerman
Guozhe Yang
Stefan Köster
Mireille Ouimet
Han Wang
Kathyrn J. Moore
Véronique Dartois
Joel D. Schilling
Jennifer A. Philips
author_facet Pallavi Chandra
Li He
Matthew Zimmerman
Guozhe Yang
Stefan Köster
Mireille Ouimet
Han Wang
Kathyrn J. Moore
Véronique Dartois
Joel D. Schilling
Jennifer A. Philips
author_sort Pallavi Chandra
title Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_short Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_full Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_fullStr Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_full_unstemmed Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_sort inhibition of fatty acid oxidation promotes macrophage control of <named-content content-type="genus-species">mycobacterium tuberculosis</named-content>
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/9440bf7fd7254ee79c47ed8d7a264eb2
work_keys_str_mv AT pallavichandra inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT lihe inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT matthewzimmerman inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT guozheyang inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT stefankoster inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT mireilleouimet inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT hanwang inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT kathyrnjmoore inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT veroniquedartois inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT joeldschilling inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT jenniferaphilips inhibitionoffattyacidoxidationpromotesmacrophagecontrolofnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
_version_ 1718427106545762304