Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects
Mendelian randomization (MR) is a powerful and widely used method for causal inference leveraging genetic information. Here, the authors develop MRMix, an MR method using mixture models for more robust and efficient estimation of causal effects.
Enregistré dans:
Auteurs principaux: | Guanghao Qi, Nilanjan Chatterjee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9449f88fcee4464bbb5f9b0d5946bae4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A robust and efficient method for Mendelian randomization with hundreds of genetic variants
par: Stephen Burgess, et autres
Publié: (2020) -
Assessing causal estimates of the association of obesity-related traits with coronary artery disease using a Mendelian randomization approach
par: Xue Zhang, et autres
Publié: (2018) -
The biomarker and causal roles of homoarginine in the development of cardiometabolic diseases: an observational and Mendelian randomization analysis
par: Ilkka Seppälä, et autres
Publié: (2017) -
Estimating causal effects of atherogenic lipid-related traits on COVID-19 susceptibility and severity using a two-sample Mendelian randomization approach
par: Masahiro Yoshikawa, et autres
Publié: (2021) -
Investigating the causal effect of smoking on hay fever and asthma: a Mendelian randomization meta-analysis in the CARTA consortium
par: Tea Skaaby, et autres
Publié: (2017)