A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.

During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexis P Yelton, Brian C Thomas, Sheri L Simmons, Paul Wilmes, Adam Zemla, Michael P Thelen, Nicholas Justice, Jillian F Banfield
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
Acceso en línea:https://doaj.org/article/944a944f8efb47d1bb6509bd53a851da
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:944a944f8efb47d1bb6509bd53a851da
record_format dspace
spelling oai:doaj.org-article:944a944f8efb47d1bb6509bd53a851da2021-11-18T05:51:52ZA semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.1553-734X1553-735810.1371/journal.pcbi.1002230https://doaj.org/article/944a944f8efb47d1bb6509bd53a851da2011-10-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22028637/pdf/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application.Alexis P YeltonBrian C ThomasSheri L SimmonsPaul WilmesAdam ZemlaMichael P ThelenNicholas JusticeJillian F BanfieldPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 7, Iss 10, p e1002230 (2011)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Alexis P Yelton
Brian C Thomas
Sheri L Simmons
Paul Wilmes
Adam Zemla
Michael P Thelen
Nicholas Justice
Jillian F Banfield
A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.
description During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application.
format article
author Alexis P Yelton
Brian C Thomas
Sheri L Simmons
Paul Wilmes
Adam Zemla
Michael P Thelen
Nicholas Justice
Jillian F Banfield
author_facet Alexis P Yelton
Brian C Thomas
Sheri L Simmons
Paul Wilmes
Adam Zemla
Michael P Thelen
Nicholas Justice
Jillian F Banfield
author_sort Alexis P Yelton
title A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.
title_short A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.
title_full A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.
title_fullStr A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.
title_full_unstemmed A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.
title_sort semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/944a944f8efb47d1bb6509bd53a851da
work_keys_str_mv AT alexispyelton asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT briancthomas asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT sherilsimmons asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT paulwilmes asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT adamzemla asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT michaelpthelen asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT nicholasjustice asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT jillianfbanfield asemiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT alexispyelton semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT briancthomas semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT sherilsimmons semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT paulwilmes semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT adamzemla semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT michaelpthelen semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT nicholasjustice semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
AT jillianfbanfield semiquantitativesyntenybasedmethodtoimprovefunctionalpredictionsforhypotheticalandpoorlyannotatedbacterialandarchaealgenes
_version_ 1718424744345206784