Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
Purpose: A novel deep learning model, Siamese Ensemble Boundary Network (SEB-Net) was developed to improve the accuracy of automatic organs-at-risk (OARs) segmentation in CT images for head and neck (HaN) as well as small organs, which was verified for use in radiation oncology practice and is there...
Guardado en:
Autores principales: | Wei Wang, Qingxin Wang, Mengyu Jia, Zhongqiu Wang, Chengwen Yang, Daguang Zhang, Shujing Wen, Delong Hou, Ningbo Liu, Ping Wang, Jun Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/945aae3dad994147b8c34a2fa781bd23 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Osteoradionecrosis in a Patient Submitted to Head and Neck Radiotherapy: A Case Report
por: Ferreira,Karla Daniella Malta, et al.
Publicado: (2019) -
Dynamics-Adapted Radiotherapy Dose (DARD) for Head and Neck Cancer Radiotherapy Dose Personalization
por: Mohammad U. Zahid, et al.
Publicado: (2021) -
Quality of Life of the Patient with Head and Neck Cancer Submitted to Radiotherapy and the Overload of Their Caregivers
por: Daniela Delalibera, et al.
Publicado: (2021) -
Comparison of Clinical Outcomes of Definitive and Postoperative Radiotherapy for Adenoid Cystic Carcinoma of the Head and Neck: Can Definitive Radiotherapy Be a Treatment Option?
por: Nobutaka Mizoguchi, et al.
Publicado: (2021) -
A Lightweight CNN Architecture for Automatic Modulation Classification
por: Zhongyong Wang, et al.
Publicado: (2021)