Biomechanical properties of endothelial glycocalyx: An imperfect pendulum

Endothelial glycocalyx plays a crucial role in hemodynamics in health and disease, yet studying it is met by multiple technical hindrances. We attempted to outline our views on some biomechanical properties of endothelial glycocalyx, which are potentially amenable to mathematical modeling. We start...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xi Zhuo Jiang, Michael S. Goligorsky
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/94642f5c7a704805bd1a43d184844139
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:94642f5c7a704805bd1a43d184844139
record_format dspace
spelling oai:doaj.org-article:94642f5c7a704805bd1a43d1848441392021-11-04T04:39:01ZBiomechanical properties of endothelial glycocalyx: An imperfect pendulum2590-028510.1016/j.mbplus.2021.100087https://doaj.org/article/94642f5c7a704805bd1a43d1848441392021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2590028521000314https://doaj.org/toc/2590-0285Endothelial glycocalyx plays a crucial role in hemodynamics in health and disease, yet studying it is met by multiple technical hindrances. We attempted to outline our views on some biomechanical properties of endothelial glycocalyx, which are potentially amenable to mathematical modeling. We start with the null-hypothesis ascribing to glycocalyx the properties of a pendulum and reject this hypothesis on the grounds of multiple obstacles for pendulum behavior, such as rich decoration with flexible negatively charged side-chains, variable length and density, fluid fixation to the plasma membrane. We next analyze the current views on membrane attachments to the cortical actin web, its pulsatile contraction-relaxation cycles which rebound to the changes in tension of the plasma membrane. Based on this, we consider the outside-in signaling, the basis for mechanotransduction, and the dampening action of the inside-out signaling. The aperiodic oscillatory motions of glycocalyx and cortical actin web underlie our prediction of two functional pacemakers. We next advance an idea that the glycocalyx, plasma membrane, and cortical actin web represent a structure-functional unit and propose the concept of tensegrity model. Finally, we present our recent data suggesting that erythrocytes are gliding or hovering and rotating over the surface of intact glycocalyx, whereas the rotational and hovering components of their passage along the capillaries are lost when glycocalyx of either is degraded. These insights into the mechanics of endothelial glycocalyx motions may be of value in crosspollination between biomechanics, physiology, and pathophysiology for deeper appreciation of its rich untapped resources in health and pharmacotherapy in disease.Xi Zhuo JiangMichael S. GoligorskyElsevierarticleEndotheliumOscillationsCortical actinRed blood cellPlasma membraneBiology (General)QH301-705.5ENMatrix Biology Plus, Vol 12, Iss , Pp 100087- (2021)
institution DOAJ
collection DOAJ
language EN
topic Endothelium
Oscillations
Cortical actin
Red blood cell
Plasma membrane
Biology (General)
QH301-705.5
spellingShingle Endothelium
Oscillations
Cortical actin
Red blood cell
Plasma membrane
Biology (General)
QH301-705.5
Xi Zhuo Jiang
Michael S. Goligorsky
Biomechanical properties of endothelial glycocalyx: An imperfect pendulum
description Endothelial glycocalyx plays a crucial role in hemodynamics in health and disease, yet studying it is met by multiple technical hindrances. We attempted to outline our views on some biomechanical properties of endothelial glycocalyx, which are potentially amenable to mathematical modeling. We start with the null-hypothesis ascribing to glycocalyx the properties of a pendulum and reject this hypothesis on the grounds of multiple obstacles for pendulum behavior, such as rich decoration with flexible negatively charged side-chains, variable length and density, fluid fixation to the plasma membrane. We next analyze the current views on membrane attachments to the cortical actin web, its pulsatile contraction-relaxation cycles which rebound to the changes in tension of the plasma membrane. Based on this, we consider the outside-in signaling, the basis for mechanotransduction, and the dampening action of the inside-out signaling. The aperiodic oscillatory motions of glycocalyx and cortical actin web underlie our prediction of two functional pacemakers. We next advance an idea that the glycocalyx, plasma membrane, and cortical actin web represent a structure-functional unit and propose the concept of tensegrity model. Finally, we present our recent data suggesting that erythrocytes are gliding or hovering and rotating over the surface of intact glycocalyx, whereas the rotational and hovering components of their passage along the capillaries are lost when glycocalyx of either is degraded. These insights into the mechanics of endothelial glycocalyx motions may be of value in crosspollination between biomechanics, physiology, and pathophysiology for deeper appreciation of its rich untapped resources in health and pharmacotherapy in disease.
format article
author Xi Zhuo Jiang
Michael S. Goligorsky
author_facet Xi Zhuo Jiang
Michael S. Goligorsky
author_sort Xi Zhuo Jiang
title Biomechanical properties of endothelial glycocalyx: An imperfect pendulum
title_short Biomechanical properties of endothelial glycocalyx: An imperfect pendulum
title_full Biomechanical properties of endothelial glycocalyx: An imperfect pendulum
title_fullStr Biomechanical properties of endothelial glycocalyx: An imperfect pendulum
title_full_unstemmed Biomechanical properties of endothelial glycocalyx: An imperfect pendulum
title_sort biomechanical properties of endothelial glycocalyx: an imperfect pendulum
publisher Elsevier
publishDate 2021
url https://doaj.org/article/94642f5c7a704805bd1a43d184844139
work_keys_str_mv AT xizhuojiang biomechanicalpropertiesofendothelialglycocalyxanimperfectpendulum
AT michaelsgoligorsky biomechanicalpropertiesofendothelialglycocalyxanimperfectpendulum
_version_ 1718445226566090752