Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells

Gholamreza Farnoosh,1 Mohammad-Reza Mahmoudian-Sani2 1Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; 2Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranCorrespon...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Farnoosh G, Mahmoudian-Sani MR
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/946d88538fba4689aec3e665e3af876c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:946d88538fba4689aec3e665e3af876c
record_format dspace
spelling oai:doaj.org-article:946d88538fba4689aec3e665e3af876c2021-12-02T03:35:31ZEffects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells1178-6957https://doaj.org/article/946d88538fba4689aec3e665e3af876c2020-09-01T00:00:00Zhttps://www.dovepress.com/effects-of-growth-factors-and-the-microrna-183-family-on-differentiati-peer-reviewed-article-SCCAAhttps://doaj.org/toc/1178-6957Gholamreza Farnoosh,1 Mohammad-Reza Mahmoudian-Sani2 1Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; 2Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranCorrespondence: Mohammad-Reza Mahmoudian-Sani Tel +98 61-33750410Fax +98 61-33750427Email mohamadsani495@gmail.comIntroduction: Hearing Loss (HL) is known as the most common sensory processing disorder across the world. An effective treatment which has been currently used for patients suffering from this condition is cochlear implant (CI). The major limitation of this treatment is the need for a healthy auditory neuron (AN). Accordingly, mesenchymal cells (MCs) are regarded as good candidates for cell-based therapeutic approaches. The present study aimed to investigate the potentials of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for differentiation towards ANs along with using treatments with growth factors and microRNA (miRNA) transfection in vitro.Methods: To this end, neurospheres derived from hBM-MSCs were treated via basic fibroblast growth factor (bFGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) as growth factors N2 and B27 supplements, as well as miRNA-96, -182, -183 transfected into hBM-MSCs in order to evaluate the differentiation of such cells into ANs.Results: Treatments with growth factors demonstrated a significant increase in neurogenin 1 (Ngn1) and sex determining region Y-box 2 (SOX2) markers; but tubulin, microtubule-associated protein 2 (MAP2), and GATA binding protein 3 (GATA3) markers were not statistically significant. The findings also revealed that miRNA-182 expression in miRNA-183 family could boost the expressions of some AN marker (ie, Ngn1, SOX2, peripherin, and nestin) in vitro.Discussion: It can be concluded that miRNA is probably a good substitute for growth factors used in differentiating into ANs. Transdifferentiation of hBM-MSCs into ANs, which does not occur under normal conditions, may be thus facilitated by miRNAs, especially miRNA-182, or via a combination of miRNA and growth factors.Keywords: microRNA-183 family, auditory neuron, human bone marrow-derived mesenchymal stem cell, growth factorFarnoosh GMahmoudian-Sani MRDove Medical Pressarticlemicrorna-183 familyauditory neuronhuman bone marrow-derived mesenchymal stem cellgrowth factorCytologyQH573-671ENStem Cells and Cloning: Advances and Applications, Vol Volume 13, Pp 79-89 (2020)
institution DOAJ
collection DOAJ
language EN
topic microrna-183 family
auditory neuron
human bone marrow-derived mesenchymal stem cell
growth factor
Cytology
QH573-671
spellingShingle microrna-183 family
auditory neuron
human bone marrow-derived mesenchymal stem cell
growth factor
Cytology
QH573-671
Farnoosh G
Mahmoudian-Sani MR
Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells
description Gholamreza Farnoosh,1 Mohammad-Reza Mahmoudian-Sani2 1Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; 2Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranCorrespondence: Mohammad-Reza Mahmoudian-Sani Tel +98 61-33750410Fax +98 61-33750427Email mohamadsani495@gmail.comIntroduction: Hearing Loss (HL) is known as the most common sensory processing disorder across the world. An effective treatment which has been currently used for patients suffering from this condition is cochlear implant (CI). The major limitation of this treatment is the need for a healthy auditory neuron (AN). Accordingly, mesenchymal cells (MCs) are regarded as good candidates for cell-based therapeutic approaches. The present study aimed to investigate the potentials of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for differentiation towards ANs along with using treatments with growth factors and microRNA (miRNA) transfection in vitro.Methods: To this end, neurospheres derived from hBM-MSCs were treated via basic fibroblast growth factor (bFGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) as growth factors N2 and B27 supplements, as well as miRNA-96, -182, -183 transfected into hBM-MSCs in order to evaluate the differentiation of such cells into ANs.Results: Treatments with growth factors demonstrated a significant increase in neurogenin 1 (Ngn1) and sex determining region Y-box 2 (SOX2) markers; but tubulin, microtubule-associated protein 2 (MAP2), and GATA binding protein 3 (GATA3) markers were not statistically significant. The findings also revealed that miRNA-182 expression in miRNA-183 family could boost the expressions of some AN marker (ie, Ngn1, SOX2, peripherin, and nestin) in vitro.Discussion: It can be concluded that miRNA is probably a good substitute for growth factors used in differentiating into ANs. Transdifferentiation of hBM-MSCs into ANs, which does not occur under normal conditions, may be thus facilitated by miRNAs, especially miRNA-182, or via a combination of miRNA and growth factors.Keywords: microRNA-183 family, auditory neuron, human bone marrow-derived mesenchymal stem cell, growth factor
format article
author Farnoosh G
Mahmoudian-Sani MR
author_facet Farnoosh G
Mahmoudian-Sani MR
author_sort Farnoosh G
title Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells
title_short Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells
title_full Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells
title_fullStr Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells
title_full_unstemmed Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells
title_sort effects of growth factors and the microrna-183 family on differentiation of human bone marrow-derived mesenchymal stem cells towards auditory neuron-like cells
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/946d88538fba4689aec3e665e3af876c
work_keys_str_mv AT farnooshg effectsofgrowthfactorsandthemicrorna183familyondifferentiationofhumanbonemarrowderivedmesenchymalstemcellstowardsauditoryneuronlikecells
AT mahmoudiansanimr effectsofgrowthfactorsandthemicrorna183familyondifferentiationofhumanbonemarrowderivedmesenchymalstemcellstowardsauditoryneuronlikecells
_version_ 1718401745013440512