Self-selection of dissipative assemblies driven by primitive chemical reaction networks

Selection and persistence of chemical non-equilibrium species is crucial for the emergence of life and the exact mechanisms remain elusive. Here the authors show that phase separation is an efficient way to control selection of chemical species when primitive carboxylic acids are brought out-of-equi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marta Tena-Solsona, Caren Wanzke, Benedikt Riess, Andreas R. Bausch, Job Boekhoven
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/9479c84013824e6a956856c7d181451c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9479c84013824e6a956856c7d181451c
record_format dspace
spelling oai:doaj.org-article:9479c84013824e6a956856c7d181451c2021-12-02T15:34:38ZSelf-selection of dissipative assemblies driven by primitive chemical reaction networks10.1038/s41467-018-04488-y2041-1723https://doaj.org/article/9479c84013824e6a956856c7d181451c2018-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04488-yhttps://doaj.org/toc/2041-1723Selection and persistence of chemical non-equilibrium species is crucial for the emergence of life and the exact mechanisms remain elusive. Here the authors show that phase separation is an efficient way to control selection of chemical species when primitive carboxylic acids are brought out-of-equilibrium by high-energy condensing agents.Marta Tena-SolsonaCaren WanzkeBenedikt RiessAndreas R. BauschJob BoekhovenNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Marta Tena-Solsona
Caren Wanzke
Benedikt Riess
Andreas R. Bausch
Job Boekhoven
Self-selection of dissipative assemblies driven by primitive chemical reaction networks
description Selection and persistence of chemical non-equilibrium species is crucial for the emergence of life and the exact mechanisms remain elusive. Here the authors show that phase separation is an efficient way to control selection of chemical species when primitive carboxylic acids are brought out-of-equilibrium by high-energy condensing agents.
format article
author Marta Tena-Solsona
Caren Wanzke
Benedikt Riess
Andreas R. Bausch
Job Boekhoven
author_facet Marta Tena-Solsona
Caren Wanzke
Benedikt Riess
Andreas R. Bausch
Job Boekhoven
author_sort Marta Tena-Solsona
title Self-selection of dissipative assemblies driven by primitive chemical reaction networks
title_short Self-selection of dissipative assemblies driven by primitive chemical reaction networks
title_full Self-selection of dissipative assemblies driven by primitive chemical reaction networks
title_fullStr Self-selection of dissipative assemblies driven by primitive chemical reaction networks
title_full_unstemmed Self-selection of dissipative assemblies driven by primitive chemical reaction networks
title_sort self-selection of dissipative assemblies driven by primitive chemical reaction networks
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/9479c84013824e6a956856c7d181451c
work_keys_str_mv AT martatenasolsona selfselectionofdissipativeassembliesdrivenbyprimitivechemicalreactionnetworks
AT carenwanzke selfselectionofdissipativeassembliesdrivenbyprimitivechemicalreactionnetworks
AT benediktriess selfselectionofdissipativeassembliesdrivenbyprimitivechemicalreactionnetworks
AT andreasrbausch selfselectionofdissipativeassembliesdrivenbyprimitivechemicalreactionnetworks
AT jobboekhoven selfselectionofdissipativeassembliesdrivenbyprimitivechemicalreactionnetworks
_version_ 1718386794152591360