Stronger arithmetic equivalence
Stronger arithmetic equivalence, Discrete Analysis 2021:23, 23 pp. An algebraic number field is a subfield $K$ of $\mathbb C$ that is finite-dimensional when considered as a vector space over $\mathbb Q$, which implies that every element of $K$ is algebraic of degree at most the dimension of this s...
Guardado en:
Autor principal: | Andrew V. Sutherland |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Diamond Open Access Journals
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/948d92633821476e97b6870cfc7e1365 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the analogy between Arithmetic Geometry and foliated spaces
por: Eric Leichtnam
Publicado: (2008) -
Arithmetic Operations and Expected Values of Regular Interval Type-2 Fuzzy Variables
por: Hui Li, et al.
Publicado: (2021) -
Knowledge Dynamics and Behavioural Equivalences in Multi-Agent Systems
por: Bogdan Aman, et al.
Publicado: (2021) -
Infinitesimals via Cauchy sequences: Refining the classical equivalence
por: Bottazzi Emanuele, et al.
Publicado: (2021) -
A polynomial-time reduction from the multi-graph isomorphism problem to additive code equivalence
por: Simeon Ball, et al.
Publicado: (2021)