Hidden maximal monotonicity in evolutionary variational-hemivariational inequalities
In this paper, we propose a new methodology to study evolutionary variational-hemivariational inequalities based on the theory of evolution equations governed by maximal monotone operators. More precisely, the proposed approach, based on a hidden maximal monotonicity, is used to explore the well-po...
Guardado en:
Autores principales: | Emilio Vilches, Shengda Zeng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Vilnius University Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/949f6123512a45eea64226fcb2bae6b8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
por: Min Ling, et al.
Publicado: (2021) -
An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
por: Plubtieng Somyot, et al.
Publicado: (2009) -
On strong singular fractional version of the Sturm–Liouville equation
por: Mehdi Shabibi, et al.
Publicado: (2021) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021) -
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
por: Altun Ishak, et al.
Publicado: (2011)