Deep-Learning-Based CT Imaging in the Quantitative Evaluation of Chronic Kidney Diseases
This study focused on the application of deep learning algorithms in the segmentation of CT images, so as to diagnose chronic kidney diseases accurately and quantitatively. First, the residual dual-attention module (RDA module) was used for automatic segmentation of renal cysts in CT images. 79 pati...
Guardado en:
Autores principales: | Xu Fu, Huaiqin Liu, Xiaowang Bi, Xiao Gong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94a2baf0e67549a783d176b23dba334a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Risk Factors of Restroke in Patients with Lacunar Cerebral Infarction Using Magnetic Resonance Imaging Image Features under Deep Learning Algorithm
por: Chunli Ma, et al.
Publicado: (2021) -
Magnetic Resonance Image Feature Analysis under Deep Learning in Diagnosis of Neurological Rehabilitation in Patients with Cerebrovascular Diseases
por: Xue Li, et al.
Publicado: (2021) -
Combined Application of CT Perfusion Imaging and CT Angiography in Imaging Diagnosis of Acute Cerebrovascular Diseases
por: Yanjiao Li, et al.
Publicado: (2021) -
Analysis of Cardiac Ultrasound Images of Critically Ill Patients Using Deep Learning
por: Lingxia Zhu, et al.
Publicado: (2021) -
Evaluation of long-acting somatostatin analog injection devices by nurses: a quantitative study
por: Adelman DT, et al.
Publicado: (2012)