Large scale active-learning-guided exploration for in vitro protein production optimization

Cell-free lysates are a major platform for in vitro protein production but batch-to-batch variation makes production difficult to predict. Here the authors develop an active learning approach to optimising buffer conditions to bring homemade lysates up to commercial production potential.

Guardado en:
Detalles Bibliográficos
Autores principales: Olivier Borkowski, Mathilde Koch, Agnès Zettor, Amir Pandi, Angelo Cardoso Batista, Paul Soudier, Jean-Loup Faulon
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/94a3b8e52cf24f769347e3c91609b690
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:94a3b8e52cf24f769347e3c91609b690
record_format dspace
spelling oai:doaj.org-article:94a3b8e52cf24f769347e3c91609b6902021-12-02T14:41:01ZLarge scale active-learning-guided exploration for in vitro protein production optimization10.1038/s41467-020-15798-52041-1723https://doaj.org/article/94a3b8e52cf24f769347e3c91609b6902020-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15798-5https://doaj.org/toc/2041-1723Cell-free lysates are a major platform for in vitro protein production but batch-to-batch variation makes production difficult to predict. Here the authors develop an active learning approach to optimising buffer conditions to bring homemade lysates up to commercial production potential.Olivier BorkowskiMathilde KochAgnès ZettorAmir PandiAngelo Cardoso BatistaPaul SoudierJean-Loup FaulonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Olivier Borkowski
Mathilde Koch
Agnès Zettor
Amir Pandi
Angelo Cardoso Batista
Paul Soudier
Jean-Loup Faulon
Large scale active-learning-guided exploration for in vitro protein production optimization
description Cell-free lysates are a major platform for in vitro protein production but batch-to-batch variation makes production difficult to predict. Here the authors develop an active learning approach to optimising buffer conditions to bring homemade lysates up to commercial production potential.
format article
author Olivier Borkowski
Mathilde Koch
Agnès Zettor
Amir Pandi
Angelo Cardoso Batista
Paul Soudier
Jean-Loup Faulon
author_facet Olivier Borkowski
Mathilde Koch
Agnès Zettor
Amir Pandi
Angelo Cardoso Batista
Paul Soudier
Jean-Loup Faulon
author_sort Olivier Borkowski
title Large scale active-learning-guided exploration for in vitro protein production optimization
title_short Large scale active-learning-guided exploration for in vitro protein production optimization
title_full Large scale active-learning-guided exploration for in vitro protein production optimization
title_fullStr Large scale active-learning-guided exploration for in vitro protein production optimization
title_full_unstemmed Large scale active-learning-guided exploration for in vitro protein production optimization
title_sort large scale active-learning-guided exploration for in vitro protein production optimization
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/94a3b8e52cf24f769347e3c91609b690
work_keys_str_mv AT olivierborkowski largescaleactivelearningguidedexplorationforinvitroproteinproductionoptimization
AT mathildekoch largescaleactivelearningguidedexplorationforinvitroproteinproductionoptimization
AT agneszettor largescaleactivelearningguidedexplorationforinvitroproteinproductionoptimization
AT amirpandi largescaleactivelearningguidedexplorationforinvitroproteinproductionoptimization
AT angelocardosobatista largescaleactivelearningguidedexplorationforinvitroproteinproductionoptimization
AT paulsoudier largescaleactivelearningguidedexplorationforinvitroproteinproductionoptimization
AT jeanloupfaulon largescaleactivelearningguidedexplorationforinvitroproteinproductionoptimization
_version_ 1718390066880970752