Large scale active-learning-guided exploration for in vitro protein production optimization
Cell-free lysates are a major platform for in vitro protein production but batch-to-batch variation makes production difficult to predict. Here the authors develop an active learning approach to optimising buffer conditions to bring homemade lysates up to commercial production potential.
Guardado en:
Autores principales: | Olivier Borkowski, Mathilde Koch, Agnès Zettor, Amir Pandi, Angelo Cardoso Batista, Paul Soudier, Jean-Loup Faulon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94a3b8e52cf24f769347e3c91609b690 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Metabolic perceptrons for neural computing in biological systems
por: Amir Pandi, et al.
Publicado: (2019) -
Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors
por: Peter L. Voyvodic, et al.
Publicado: (2019) -
A quick guide to large-scale genomic data mining.
por: Curtis Huttenhower, et al.
Publicado: (2010) -
Large scale phosphoprotein profiling to explore Drosophila cold acclimation regulatory mechanisms
por: Hervé Colinet, et al.
Publicado: (2017) -
Exploring App-Based Taxi Movement Patterns from Large-Scale Geolocation Data
por: Wenbo Zhang, et al.
Publicado: (2021)