Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm
The effective decoding of motor imagination EEG signals depends on significant temporal, spatial, and frequency features. For example, the motor imagination of the single limbs is embodied in the μ (8–13 Hz) rhythm and β (13–30 Hz) rhythm in frequency features. However, the significant temporal feat...
Guardado en:
Autores principales: | Jun Yang, Zhengmin Ma, Tao Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94ad339006984180bfc994859f6dafc4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
por: Amira Echtioui, et al.
Publicado: (2021) -
Dual Head and Dual Attention in Deep Learning for End-to-End EEG Motor Imagery Classification
por: Meiyan Xu, et al.
Publicado: (2021) -
Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets
por: Minh Tran Duc Nguyen, et al.
Publicado: (2021) -
Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts
por: Hirotaka Sugino, et al.
Publicado: (2021) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Jing-Shan Huang, et al.
Publicado: (2021)