Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters
Microseismic monitoring system is one of the effective means to monitor ground stress in deep mines. The accuracy and speed of microseismic signal identification directly affect the stability analysis in rock engineering. At present, manual identification, which heavily relies on manual experience,...
Guardado en:
Autores principales: | Kang Peng, Zheng Tang, Longjun Dong, Daoyuan Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94b55528a82647b48dab4b769ba1dfc5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Review on Early Warning Methods for Rockbursts in Tunnel Engineering Based on Microseismic Monitoring
por: Shichao Zhang, et al.
Publicado: (2021) -
A Method for Parameter Identification of Composite Beam Piezoelectric Energy Harvester
por: Xuhui Zhang, et al.
Publicado: (2021) -
Three-Component Microseismic Data Denoising Based on Re-Constrain Variational Mode Decomposition
por: Zhili Chen, et al.
Publicado: (2021) -
Biopotential Signal Monitoring Systems in Rehabilitation: A Review
por: Arrigo Palumbo, et al.
Publicado: (2021) -
Low-Computational-Cost Hybrid FEM-Analytical Induction Machine Model for the Diagnosis of Rotor Eccentricity, Based on Sparse Identification Techniques and Trigonometric Interpolation
por: Carla Terron-Santiago, et al.
Publicado: (2021)