Atomistic configurational forces in crystalline fracture

Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energeti...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: S. Elmira Birang O, Harold S. Park, Ana-Suncana Smith, Paul Steinmann
Format: article
Langue:EN
Publié: Elsevier 2021
Sujets:
T
Accès en ligne:https://doaj.org/article/94c36e94f50b4a2c906ff9fe59165f40
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energetically favorable irreversible re-organizations of the material body, and thus characterize the tendency of crystalline defects to propagate. In this work, we provide new expressions for the atomistic configurational forces for two realistic interatomic potentials, i.e. the embedded atom potential (EAM) for metals, and second generation reactive bond order (REBO-II) potential for hydrocarbons. We present a range of numerical examples involving quasistatic fracture for both FCC metals and mono and bi-layer graphene at zero Kelvin that demonstrate the ability to predict defect nucleation and evolution using the proposed atomistic configurational mechanics approach. Furthermore, we provide the contributions for each potential including two-body stretching, three-body mixed-mode stretching-bending, and four-body mixed-mode stretching-bending-twisting terms that make towards defect nucleation and propagation.