Atomistic configurational forces in crystalline fracture
Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energeti...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94c36e94f50b4a2c906ff9fe59165f40 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:94c36e94f50b4a2c906ff9fe59165f40 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:94c36e94f50b4a2c906ff9fe59165f402021-11-18T04:52:04ZAtomistic configurational forces in crystalline fracture2666-359710.1016/j.finmec.2021.100044https://doaj.org/article/94c36e94f50b4a2c906ff9fe59165f402021-10-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666359721000354https://doaj.org/toc/2666-3597Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energetically favorable irreversible re-organizations of the material body, and thus characterize the tendency of crystalline defects to propagate. In this work, we provide new expressions for the atomistic configurational forces for two realistic interatomic potentials, i.e. the embedded atom potential (EAM) for metals, and second generation reactive bond order (REBO-II) potential for hydrocarbons. We present a range of numerical examples involving quasistatic fracture for both FCC metals and mono and bi-layer graphene at zero Kelvin that demonstrate the ability to predict defect nucleation and evolution using the proposed atomistic configurational mechanics approach. Furthermore, we provide the contributions for each potential including two-body stretching, three-body mixed-mode stretching-bending, and four-body mixed-mode stretching-bending-twisting terms that make towards defect nucleation and propagation.S. Elmira Birang OHarold S. ParkAna-Suncana SmithPaul SteinmannElsevierarticleAtomistic configurational mechanicsConfigurational forcesMany-body potentialsFracture mechanicsMechanics of engineering. Applied mechanicsTA349-359TechnologyTENForces in Mechanics, Vol 4, Iss , Pp 100044- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Atomistic configurational mechanics Configurational forces Many-body potentials Fracture mechanics Mechanics of engineering. Applied mechanics TA349-359 Technology T |
spellingShingle |
Atomistic configurational mechanics Configurational forces Many-body potentials Fracture mechanics Mechanics of engineering. Applied mechanics TA349-359 Technology T S. Elmira Birang O Harold S. Park Ana-Suncana Smith Paul Steinmann Atomistic configurational forces in crystalline fracture |
description |
Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energetically favorable irreversible re-organizations of the material body, and thus characterize the tendency of crystalline defects to propagate. In this work, we provide new expressions for the atomistic configurational forces for two realistic interatomic potentials, i.e. the embedded atom potential (EAM) for metals, and second generation reactive bond order (REBO-II) potential for hydrocarbons. We present a range of numerical examples involving quasistatic fracture for both FCC metals and mono and bi-layer graphene at zero Kelvin that demonstrate the ability to predict defect nucleation and evolution using the proposed atomistic configurational mechanics approach. Furthermore, we provide the contributions for each potential including two-body stretching, three-body mixed-mode stretching-bending, and four-body mixed-mode stretching-bending-twisting terms that make towards defect nucleation and propagation. |
format |
article |
author |
S. Elmira Birang O Harold S. Park Ana-Suncana Smith Paul Steinmann |
author_facet |
S. Elmira Birang O Harold S. Park Ana-Suncana Smith Paul Steinmann |
author_sort |
S. Elmira Birang O |
title |
Atomistic configurational forces in crystalline fracture |
title_short |
Atomistic configurational forces in crystalline fracture |
title_full |
Atomistic configurational forces in crystalline fracture |
title_fullStr |
Atomistic configurational forces in crystalline fracture |
title_full_unstemmed |
Atomistic configurational forces in crystalline fracture |
title_sort |
atomistic configurational forces in crystalline fracture |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/94c36e94f50b4a2c906ff9fe59165f40 |
work_keys_str_mv |
AT selmirabirango atomisticconfigurationalforcesincrystallinefracture AT haroldspark atomisticconfigurationalforcesincrystallinefracture AT anasuncanasmith atomisticconfigurationalforcesincrystallinefracture AT paulsteinmann atomisticconfigurationalforcesincrystallinefracture |
_version_ |
1718424992759152640 |