Atomistic configurational forces in crystalline fracture

Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energeti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Elmira Birang O, Harold S. Park, Ana-Suncana Smith, Paul Steinmann
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
T
Acceso en línea:https://doaj.org/article/94c36e94f50b4a2c906ff9fe59165f40
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:94c36e94f50b4a2c906ff9fe59165f40
record_format dspace
spelling oai:doaj.org-article:94c36e94f50b4a2c906ff9fe59165f402021-11-18T04:52:04ZAtomistic configurational forces in crystalline fracture2666-359710.1016/j.finmec.2021.100044https://doaj.org/article/94c36e94f50b4a2c906ff9fe59165f402021-10-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666359721000354https://doaj.org/toc/2666-3597Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energetically favorable irreversible re-organizations of the material body, and thus characterize the tendency of crystalline defects to propagate. In this work, we provide new expressions for the atomistic configurational forces for two realistic interatomic potentials, i.e. the embedded atom potential (EAM) for metals, and second generation reactive bond order (REBO-II) potential for hydrocarbons. We present a range of numerical examples involving quasistatic fracture for both FCC metals and mono and bi-layer graphene at zero Kelvin that demonstrate the ability to predict defect nucleation and evolution using the proposed atomistic configurational mechanics approach. Furthermore, we provide the contributions for each potential including two-body stretching, three-body mixed-mode stretching-bending, and four-body mixed-mode stretching-bending-twisting terms that make towards defect nucleation and propagation.S. Elmira Birang OHarold S. ParkAna-Suncana SmithPaul SteinmannElsevierarticleAtomistic configurational mechanicsConfigurational forcesMany-body potentialsFracture mechanicsMechanics of engineering. Applied mechanicsTA349-359TechnologyTENForces in Mechanics, Vol 4, Iss , Pp 100044- (2021)
institution DOAJ
collection DOAJ
language EN
topic Atomistic configurational mechanics
Configurational forces
Many-body potentials
Fracture mechanics
Mechanics of engineering. Applied mechanics
TA349-359
Technology
T
spellingShingle Atomistic configurational mechanics
Configurational forces
Many-body potentials
Fracture mechanics
Mechanics of engineering. Applied mechanics
TA349-359
Technology
T
S. Elmira Birang O
Harold S. Park
Ana-Suncana Smith
Paul Steinmann
Atomistic configurational forces in crystalline fracture
description Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energetically favorable irreversible re-organizations of the material body, and thus characterize the tendency of crystalline defects to propagate. In this work, we provide new expressions for the atomistic configurational forces for two realistic interatomic potentials, i.e. the embedded atom potential (EAM) for metals, and second generation reactive bond order (REBO-II) potential for hydrocarbons. We present a range of numerical examples involving quasistatic fracture for both FCC metals and mono and bi-layer graphene at zero Kelvin that demonstrate the ability to predict defect nucleation and evolution using the proposed atomistic configurational mechanics approach. Furthermore, we provide the contributions for each potential including two-body stretching, three-body mixed-mode stretching-bending, and four-body mixed-mode stretching-bending-twisting terms that make towards defect nucleation and propagation.
format article
author S. Elmira Birang O
Harold S. Park
Ana-Suncana Smith
Paul Steinmann
author_facet S. Elmira Birang O
Harold S. Park
Ana-Suncana Smith
Paul Steinmann
author_sort S. Elmira Birang O
title Atomistic configurational forces in crystalline fracture
title_short Atomistic configurational forces in crystalline fracture
title_full Atomistic configurational forces in crystalline fracture
title_fullStr Atomistic configurational forces in crystalline fracture
title_full_unstemmed Atomistic configurational forces in crystalline fracture
title_sort atomistic configurational forces in crystalline fracture
publisher Elsevier
publishDate 2021
url https://doaj.org/article/94c36e94f50b4a2c906ff9fe59165f40
work_keys_str_mv AT selmirabirango atomisticconfigurationalforcesincrystallinefracture
AT haroldspark atomisticconfigurationalforcesincrystallinefracture
AT anasuncanasmith atomisticconfigurationalforcesincrystallinefracture
AT paulsteinmann atomisticconfigurationalforcesincrystallinefracture
_version_ 1718424992759152640