Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds
Abstract Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory t...
Guardado en:
Autores principales: | Hamid Hamraz, Marco A. Contreras, Jun Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94cf7ffc6e48403f9ce1178f103a7b24 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on the improvement of single tree segmentation algorithm based on airborne LiDAR point cloud
por: Chen Qiuji, et al.
Publicado: (2021) -
Harnessing terrestrial laser scanning to predict understory biomass in temperate mixed forests
por: Shun Li, et al.
Publicado: (2021) -
Structural Wall Facade Reconstruction of Scanned Scene in Point Clouds
por: NING, X., et al.
Publicado: (2021) -
Possibilities to determine biometric parameters using airborne laser scanning data
por: Polyakova Mariya, et al.
Publicado: (2021) -
A Post-Scan Point Cloud Colorization Method for Cultural Heritage Documentation
por: Ting On Chan, et al.
Publicado: (2021)