Tree counting with high spatial-resolution satellite imagery based on deep neural networks
Forest inventory at single-tree level is of great importance to modern forest management. The inventory contains two critical parameters about trees, including their numbers and spatial locations. Traditional methods to catalogue single trees are laborious, while deep neural networks enable to disco...
Guardado en:
Autores principales: | Ling Yao, Tang Liu, Jun Qin, Ning Lu, Chenghu Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94e730b556614bbc80634086114cd1f8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China
por: Yi Xie, et al.
Publicado: (2021) -
Robust Damage Estimation of Typhoon Goni on Coconut Crops with Sentinel-2 Imagery
por: Andrés C. Rodríguez, et al.
Publicado: (2021) -
Crowd counting via Multi-Scale Adversarial Convolutional Neural Networks
por: Zhu Liping, et al.
Publicado: (2020) -
Relationships between a catchment-scale forest disturbance index, time delays, and chemical properties of surface water
por: Susanne I. Schmidt, et al.
Publicado: (2021) -
Single Shot MultiBox Detector for Urban Plantation Single Tree Detection and Location With High-Resolution Remote Sensing Imagery
por: Yueyuan Zheng, et al.
Publicado: (2021)