Tree counting with high spatial-resolution satellite imagery based on deep neural networks
Forest inventory at single-tree level is of great importance to modern forest management. The inventory contains two critical parameters about trees, including their numbers and spatial locations. Traditional methods to catalogue single trees are laborious, while deep neural networks enable to disco...
Enregistré dans:
Auteurs principaux: | Ling Yao, Tang Liu, Jun Qin, Ning Lu, Chenghu Zhou |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/94e730b556614bbc80634086114cd1f8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China
par: Yi Xie, et autres
Publié: (2021) -
Robust Damage Estimation of Typhoon Goni on Coconut Crops with Sentinel-2 Imagery
par: Andrés C. Rodríguez, et autres
Publié: (2021) -
Crowd counting via Multi-Scale Adversarial Convolutional Neural Networks
par: Zhu Liping, et autres
Publié: (2020) -
Relationships between a catchment-scale forest disturbance index, time delays, and chemical properties of surface water
par: Susanne I. Schmidt, et autres
Publié: (2021) -
Single Shot MultiBox Detector for Urban Plantation Single Tree Detection and Location With High-Resolution Remote Sensing Imagery
par: Yueyuan Zheng, et autres
Publié: (2021)