A Multi-Task Group Bi-LSTM Networks Application on Electrocardiogram Classification
Background: Cardiovascular diseases (CVD) are the leading cause of death globally. Electrocardiogram (ECG) analysis can provide thoroughly assessment for different CVDs efficiently. We propose a multi-task group bidirectional long short-term memory (MTGBi-LSTM) framework to intelligent recognize mul...
Guardado en:
Autores principales: | Qiu-Jie Lv, Hsin-Yi Chen, Wei-Bin Zhong, Ying-Ying Wang, Jing-Yan Song, Sai-Di Guo, Lian-Xin Qi, Calvin Yu-Chian Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/94f2b2040d264ed7ac2bb0956e9dfd1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
BiLSTM-Attention: An Air Target Tactical Intention Recognition Model
por: Teng Fei, Liu Shu, Song Yafei
Publicado: (2021) -
Research on LSTM+Attention Model of Infant Cry Classification
por: Tianye Jian, et al.
Publicado: (2021) -
Massage Therapy’s Effectiveness on the Decoding EEG Rhythms of Left/Right Motor Imagery and Motion Execution in Patients With Skeletal Muscle Pain
por: Huihui Li, et al.
Publicado: (2021) -
The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
A Novel Method for Quantitative Analysis of C-Reactive Protein Lateral Flow Immunoassays Images via CMOS Sensor and Recurrent Neural Networks
por: Min Jing, et al.
Publicado: (2021)