Genetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma

Abstract This study aimed to characterize the key survival-specific genes for lung adenocarcinoma (LUAD) using machine-based learning approaches. Gene expression profiles were download from gene expression omnibus to analyze differentially expressed genes (DEGs) in LUAD tissues versus healthy lung t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jinying Wei, Guangping Meng, Jing Wu, Qiang Zhang, Jie Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/94f3a2b3da7f464595f907a135ed9402
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:94f3a2b3da7f464595f907a135ed9402
record_format dspace
spelling oai:doaj.org-article:94f3a2b3da7f464595f907a135ed94022021-12-02T14:29:09ZGenetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma10.1038/s41598-021-88948-42045-2322https://doaj.org/article/94f3a2b3da7f464595f907a135ed94022021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88948-4https://doaj.org/toc/2045-2322Abstract This study aimed to characterize the key survival-specific genes for lung adenocarcinoma (LUAD) using machine-based learning approaches. Gene expression profiles were download from gene expression omnibus to analyze differentially expressed genes (DEGs) in LUAD tissues versus healthy lung tissue and to construct protein–protein interaction (PPI) networks. Using high-dimensional datasets of cancer specimens from clinical patients in the cancer genome atlas, gene set enrichment analysis was employed to assess the independent effect of meiotic nuclear divisions 1 (MND1) expression on survival status, and univariate and multivariate Cox regression analyses were applied to determine the associations of clinic-pathologic characteristics and MND1 expression with overall survival (OS). A set of 495 DEGs (145 upregulated and 350 downregulated) was detected, including 63 hub genes with ≥ 10 nodes in the PPI network. Among them, MND1 was participated in several important pathways by connecting with other genes via 17 nodes in lung cancer, and more frequently expressed in LUAD patients with advancing stage (OR = 1.68 for stage III vs. stage I). Univariate and multivariate Cox analyses demonstrated that the expression level of MND1 was significantly and negatively correlated with OS. Therefore, MND1 is a promising diagnostic and therapeutic target for LUAD.Jinying WeiGuangping MengJing WuQiang ZhangJie ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jinying Wei
Guangping Meng
Jing Wu
Qiang Zhang
Jie Zhang
Genetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma
description Abstract This study aimed to characterize the key survival-specific genes for lung adenocarcinoma (LUAD) using machine-based learning approaches. Gene expression profiles were download from gene expression omnibus to analyze differentially expressed genes (DEGs) in LUAD tissues versus healthy lung tissue and to construct protein–protein interaction (PPI) networks. Using high-dimensional datasets of cancer specimens from clinical patients in the cancer genome atlas, gene set enrichment analysis was employed to assess the independent effect of meiotic nuclear divisions 1 (MND1) expression on survival status, and univariate and multivariate Cox regression analyses were applied to determine the associations of clinic-pathologic characteristics and MND1 expression with overall survival (OS). A set of 495 DEGs (145 upregulated and 350 downregulated) was detected, including 63 hub genes with ≥ 10 nodes in the PPI network. Among them, MND1 was participated in several important pathways by connecting with other genes via 17 nodes in lung cancer, and more frequently expressed in LUAD patients with advancing stage (OR = 1.68 for stage III vs. stage I). Univariate and multivariate Cox analyses demonstrated that the expression level of MND1 was significantly and negatively correlated with OS. Therefore, MND1 is a promising diagnostic and therapeutic target for LUAD.
format article
author Jinying Wei
Guangping Meng
Jing Wu
Qiang Zhang
Jie Zhang
author_facet Jinying Wei
Guangping Meng
Jing Wu
Qiang Zhang
Jie Zhang
author_sort Jinying Wei
title Genetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma
title_short Genetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma
title_full Genetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma
title_fullStr Genetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma
title_full_unstemmed Genetic network and gene set enrichment analyses identify MND1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma
title_sort genetic network and gene set enrichment analyses identify mnd1 as potential diagnostic and therapeutic target gene for lung adenocarcinoma
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/94f3a2b3da7f464595f907a135ed9402
work_keys_str_mv AT jinyingwei geneticnetworkandgenesetenrichmentanalysesidentifymnd1aspotentialdiagnosticandtherapeutictargetgeneforlungadenocarcinoma
AT guangpingmeng geneticnetworkandgenesetenrichmentanalysesidentifymnd1aspotentialdiagnosticandtherapeutictargetgeneforlungadenocarcinoma
AT jingwu geneticnetworkandgenesetenrichmentanalysesidentifymnd1aspotentialdiagnosticandtherapeutictargetgeneforlungadenocarcinoma
AT qiangzhang geneticnetworkandgenesetenrichmentanalysesidentifymnd1aspotentialdiagnosticandtherapeutictargetgeneforlungadenocarcinoma
AT jiezhang geneticnetworkandgenesetenrichmentanalysesidentifymnd1aspotentialdiagnosticandtherapeutictargetgeneforlungadenocarcinoma
_version_ 1718391266951036928