Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode

Electron spins are amongst the most coherent solid-state systems known. However, to be used in devices for quantum sensing and information processing applications, they must typically be placed near interfaces. Understanding and mitigating the impacts of such interfaces on the coherence and spectral...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: V. Ranjan, B. Albanese, E. Albertinale, E. Billaud, D. Flanigan, J. J. Pla, T. Schenkel, D. Vion, D. Esteve, E. Flurin, J. J. L. Morton, Y. M. Niquet, P. Bertet
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/94fac58797d6477084e22b27f0c4f86d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:94fac58797d6477084e22b27f0c4f86d
record_format dspace
spelling oai:doaj.org-article:94fac58797d6477084e22b27f0c4f86d2021-12-02T18:51:07ZSpatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode10.1103/PhysRevX.11.0310362160-3308https://doaj.org/article/94fac58797d6477084e22b27f0c4f86d2021-08-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.031036http://doi.org/10.1103/PhysRevX.11.031036https://doaj.org/toc/2160-3308Electron spins are amongst the most coherent solid-state systems known. However, to be used in devices for quantum sensing and information processing applications, they must typically be placed near interfaces. Understanding and mitigating the impacts of such interfaces on the coherence and spectral properties of electron spins is critical to realizing such applications, but it is also challenging: Inferring such data from single-spin studies requires many measurements to obtain meaningful results, while ensemble measurements typically give averaged results that hide critical information. Here, we report a comprehensive study of the coherence of near-surface bismuth donor spins in 28-silicon at millikelvin temperatures. In particular, we use strain-induced frequency shifts caused by a metallic electrode to infer spatial maps of spin coherence as a function of position relative to the electrode. By measuring magnetic-field-insensitive clock transitions, we separate magnetic noise caused by surface spins from charge noise. Our results include quantitative models of the strain-split spin resonance spectra and extraction of paramagnetic impurity concentrations at the silicon surface. The interplay of these decoherence mechanisms for such near-surface electron spins is critical for their application in quantum technologies, while the combination of the strain splitting and clock transition extends the coherence lifetimes by up to 2 orders of magnitude, reaching up to 300 ms at a mean depth of only 100 nm. The technique we introduce here to spatially map coherence in near-surface ensembles is directly applicable to other spin systems of active interest, such as defects in diamond, silicon carbide, and rare earth ions in optical crystals.V. RanjanB. AlbaneseE. AlbertinaleE. BillaudD. FlaniganJ. J. PlaT. SchenkelD. VionD. EsteveE. FlurinJ. J. L. MortonY. M. NiquetP. BertetAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 3, p 031036 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
V. Ranjan
B. Albanese
E. Albertinale
E. Billaud
D. Flanigan
J. J. Pla
T. Schenkel
D. Vion
D. Esteve
E. Flurin
J. J. L. Morton
Y. M. Niquet
P. Bertet
Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode
description Electron spins are amongst the most coherent solid-state systems known. However, to be used in devices for quantum sensing and information processing applications, they must typically be placed near interfaces. Understanding and mitigating the impacts of such interfaces on the coherence and spectral properties of electron spins is critical to realizing such applications, but it is also challenging: Inferring such data from single-spin studies requires many measurements to obtain meaningful results, while ensemble measurements typically give averaged results that hide critical information. Here, we report a comprehensive study of the coherence of near-surface bismuth donor spins in 28-silicon at millikelvin temperatures. In particular, we use strain-induced frequency shifts caused by a metallic electrode to infer spatial maps of spin coherence as a function of position relative to the electrode. By measuring magnetic-field-insensitive clock transitions, we separate magnetic noise caused by surface spins from charge noise. Our results include quantitative models of the strain-split spin resonance spectra and extraction of paramagnetic impurity concentrations at the silicon surface. The interplay of these decoherence mechanisms for such near-surface electron spins is critical for their application in quantum technologies, while the combination of the strain splitting and clock transition extends the coherence lifetimes by up to 2 orders of magnitude, reaching up to 300 ms at a mean depth of only 100 nm. The technique we introduce here to spatially map coherence in near-surface ensembles is directly applicable to other spin systems of active interest, such as defects in diamond, silicon carbide, and rare earth ions in optical crystals.
format article
author V. Ranjan
B. Albanese
E. Albertinale
E. Billaud
D. Flanigan
J. J. Pla
T. Schenkel
D. Vion
D. Esteve
E. Flurin
J. J. L. Morton
Y. M. Niquet
P. Bertet
author_facet V. Ranjan
B. Albanese
E. Albertinale
E. Billaud
D. Flanigan
J. J. Pla
T. Schenkel
D. Vion
D. Esteve
E. Flurin
J. J. L. Morton
Y. M. Niquet
P. Bertet
author_sort V. Ranjan
title Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode
title_short Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode
title_full Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode
title_fullStr Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode
title_full_unstemmed Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode
title_sort spatially resolved decoherence of donor spins in silicon strained by a metallic electrode
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/94fac58797d6477084e22b27f0c4f86d
work_keys_str_mv AT vranjan spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT balbanese spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT ealbertinale spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT ebillaud spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT dflanigan spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT jjpla spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT tschenkel spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT dvion spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT desteve spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT eflurin spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT jjlmorton spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT ymniquet spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
AT pbertet spatiallyresolveddecoherenceofdonorspinsinsiliconstrainedbyametallicelectrode
_version_ 1718377461114208256