Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach

This study examines the potential of the soft computing technique—namely, Gaussian process regression (GPR), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath shallow foundations. The inputs of the model are width of footing (<i>B</i>), depth of footing (<i&...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahmood Ahmad, Feezan Ahmad, Piotr Wróblewski, Ramez A. Al-Mansob, Piotr Olczak, Paweł Kamiński, Muhammad Safdar, Partab Rai
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/9500e13ff9ec412f982811748e6838e8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9500e13ff9ec412f982811748e6838e8
record_format dspace
spelling oai:doaj.org-article:9500e13ff9ec412f982811748e6838e82021-11-11T15:20:33ZPrediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach10.3390/app1121103172076-3417https://doaj.org/article/9500e13ff9ec412f982811748e6838e82021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10317https://doaj.org/toc/2076-3417This study examines the potential of the soft computing technique—namely, Gaussian process regression (GPR), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath shallow foundations. The inputs of the model are width of footing (<i>B</i>), depth of footing (<i>D</i>), footing geometry (<i>L</i>/<i>B</i>), unit weight of sand (<i>γ</i>), and internal friction angle (<i>ϕ</i>). The results of the present model were compared with those obtained by two theoretical approaches reported in the literature. The statistical evaluation of results shows that the presently applied paradigm is better than the theoretical approaches and is competing well for the prediction of UBC (<i>q<sub>u</sub></i>). This study shows that the developed GPR is a robust model for the <i>q<sub>u</sub></i> prediction of shallow foundations on cohesionless soil. Sensitivity analysis was also carried out to determine the effect of each input parameter.Mahmood AhmadFeezan AhmadPiotr WróblewskiRamez A. Al-MansobPiotr OlczakPaweł KamińskiMuhammad SafdarPartab RaiMDPI AGarticlecohesionless soilmachine learningGaussian process regressionshallow foundationultimate bearing capacityTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10317, p 10317 (2021)
institution DOAJ
collection DOAJ
language EN
topic cohesionless soil
machine learning
Gaussian process regression
shallow foundation
ultimate bearing capacity
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle cohesionless soil
machine learning
Gaussian process regression
shallow foundation
ultimate bearing capacity
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Mahmood Ahmad
Feezan Ahmad
Piotr Wróblewski
Ramez A. Al-Mansob
Piotr Olczak
Paweł Kamiński
Muhammad Safdar
Partab Rai
Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
description This study examines the potential of the soft computing technique—namely, Gaussian process regression (GPR), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath shallow foundations. The inputs of the model are width of footing (<i>B</i>), depth of footing (<i>D</i>), footing geometry (<i>L</i>/<i>B</i>), unit weight of sand (<i>γ</i>), and internal friction angle (<i>ϕ</i>). The results of the present model were compared with those obtained by two theoretical approaches reported in the literature. The statistical evaluation of results shows that the presently applied paradigm is better than the theoretical approaches and is competing well for the prediction of UBC (<i>q<sub>u</sub></i>). This study shows that the developed GPR is a robust model for the <i>q<sub>u</sub></i> prediction of shallow foundations on cohesionless soil. Sensitivity analysis was also carried out to determine the effect of each input parameter.
format article
author Mahmood Ahmad
Feezan Ahmad
Piotr Wróblewski
Ramez A. Al-Mansob
Piotr Olczak
Paweł Kamiński
Muhammad Safdar
Partab Rai
author_facet Mahmood Ahmad
Feezan Ahmad
Piotr Wróblewski
Ramez A. Al-Mansob
Piotr Olczak
Paweł Kamiński
Muhammad Safdar
Partab Rai
author_sort Mahmood Ahmad
title Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
title_short Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
title_full Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
title_fullStr Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
title_full_unstemmed Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
title_sort prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: a gaussian process regression approach
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/9500e13ff9ec412f982811748e6838e8
work_keys_str_mv AT mahmoodahmad predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
AT feezanahmad predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
AT piotrwroblewski predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
AT ramezaalmansob predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
AT piotrolczak predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
AT pawełkaminski predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
AT muhammadsafdar predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
AT partabrai predictionofultimatebearingcapacityofshallowfoundationsoncohesionlesssoilsagaussianprocessregressionapproach
_version_ 1718435379323863040