Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
This study examines the potential of the soft computing technique—namely, Gaussian process regression (GPR), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath shallow foundations. The inputs of the model are width of footing (<i>B</i>), depth of footing (<i&...
Guardado en:
Autores principales: | Mahmood Ahmad, Feezan Ahmad, Piotr Wróblewski, Ramez A. Al-Mansob, Piotr Olczak, Paweł Kamiński, Muhammad Safdar, Partab Rai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9500e13ff9ec412f982811748e6838e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of the seismic bearing capacity of shallow foundations
por: Tiznado A,Juan Carlos, et al.
Publicado: (2014) -
Improving deep neural network using hyper-parameters tuning in predicting the bearing capacity of shallow foundations
por: Tuan Anh Pham, et al.
Publicado: (2021) -
“Ultimately Human” and “An Ultimate Human Being”: from S.P.Shevyrev to F.M. Dostoevsky
por: Nina V. Tsvetkova
Publicado: (2018) -
The Influence of Cyclic Loading on Ultimate Bending Strength of Beech Solid and Laminated Wood
por: Milan Gaff, et al.
Publicado: (2014) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Chi-Ken Lu, et al.
Publicado: (2021)