Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk
Ho, Nyaga et al. develop a machine learning approach for ranking tissue-specific gene regulatory affects, used here for type 1 diabetes SNPs. They identify the lung as a site where these regulatory impacts can be most impactful, which may contribute to understanding the link between respiratory issu...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9509bda596664eab9816f6a97f9db45f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9509bda596664eab9816f6a97f9db45f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9509bda596664eab9816f6a97f9db45f2021-12-02T18:34:00ZIdentifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk10.1038/s42003-021-02594-02399-3642https://doaj.org/article/9509bda596664eab9816f6a97f9db45f2021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02594-0https://doaj.org/toc/2399-3642Ho, Nyaga et al. develop a machine learning approach for ranking tissue-specific gene regulatory affects, used here for type 1 diabetes SNPs. They identify the lung as a site where these regulatory impacts can be most impactful, which may contribute to understanding the link between respiratory issues and risk of islet autoantibody seroconvernsion.Daniel HoDenis M. NyagaWilliam SchierdingRichard SafferyJo K. PerryJohn A. TaylorMark H. VickersAndreas W. Kempa-LiehrJustin M. O’SullivanNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Daniel Ho Denis M. Nyaga William Schierding Richard Saffery Jo K. Perry John A. Taylor Mark H. Vickers Andreas W. Kempa-Liehr Justin M. O’Sullivan Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk |
description |
Ho, Nyaga et al. develop a machine learning approach for ranking tissue-specific gene regulatory affects, used here for type 1 diabetes SNPs. They identify the lung as a site where these regulatory impacts can be most impactful, which may contribute to understanding the link between respiratory issues and risk of islet autoantibody seroconvernsion. |
format |
article |
author |
Daniel Ho Denis M. Nyaga William Schierding Richard Saffery Jo K. Perry John A. Taylor Mark H. Vickers Andreas W. Kempa-Liehr Justin M. O’Sullivan |
author_facet |
Daniel Ho Denis M. Nyaga William Schierding Richard Saffery Jo K. Perry John A. Taylor Mark H. Vickers Andreas W. Kempa-Liehr Justin M. O’Sullivan |
author_sort |
Daniel Ho |
title |
Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk |
title_short |
Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk |
title_full |
Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk |
title_fullStr |
Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk |
title_full_unstemmed |
Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk |
title_sort |
identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9509bda596664eab9816f6a97f9db45f |
work_keys_str_mv |
AT danielho identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT denismnyaga identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT williamschierding identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT richardsaffery identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT jokperry identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT johnataylor identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT markhvickers identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT andreaswkempaliehr identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk AT justinmosullivan identifyingthelungsasasusceptiblesiteforallelespecificregulatorychangesassociatedwithtype1diabetesrisk |
_version_ |
1718377933780811776 |