Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk
Ho, Nyaga et al. develop a machine learning approach for ranking tissue-specific gene regulatory affects, used here for type 1 diabetes SNPs. They identify the lung as a site where these regulatory impacts can be most impactful, which may contribute to understanding the link between respiratory issu...
Enregistré dans:
Auteurs principaux: | Daniel Ho, Denis M. Nyaga, William Schierding, Richard Saffery, Jo K. Perry, John A. Taylor, Mark H. Vickers, Andreas W. Kempa-Liehr, Justin M. O’Sullivan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9509bda596664eab9816f6a97f9db45f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Untangling the genetic link between type 1 and type 2 diabetes using functional genomics
par: Denis M. Nyaga, et autres
Publié: (2021) -
Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities
par: Tayaza Fadason, et autres
Publié: (2018) -
New susceptibility and resistance HLA-DP alleles to HBV-related diseases identified by a trans-ethnic association study in Asia.
par: Nao Nishida, et autres
Publié: (2014) -
Identifying DNase I hypersensitive sites as driver distal regulatory elements in breast cancer
par: Matteo D′Antonio, et autres
Publié: (2017) -
Allele-specific expression of Parkinson’s disease susceptibility genes in human brain
par: Margrete Langmyhr, et autres
Publié: (2021)