The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards

Abstract Problem framing is critical to developing risk prediction models because all subsequent development work and evaluation takes place within the context of how a problem has been framed and explicit documentation of framing choices makes it easier to compare evaluation metrics between publish...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Simon Meyer Lauritsen, Bo Thiesson, Marianne Johansson Jørgensen, Anders Hammerich Riis, Ulrick Skipper Espelund, Jesper Bo Weile, Jeppe Lange
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/951bd4e1777041f6af156aa4d5aa40ac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:951bd4e1777041f6af156aa4d5aa40ac
record_format dspace
spelling oai:doaj.org-article:951bd4e1777041f6af156aa4d5aa40ac2021-11-21T12:05:40ZThe Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards10.1038/s41746-021-00529-x2398-6352https://doaj.org/article/951bd4e1777041f6af156aa4d5aa40ac2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41746-021-00529-xhttps://doaj.org/toc/2398-6352Abstract Problem framing is critical to developing risk prediction models because all subsequent development work and evaluation takes place within the context of how a problem has been framed and explicit documentation of framing choices makes it easier to compare evaluation metrics between published studies. In this work, we introduce the basic concepts of framing, including prediction windows, observation windows, window shifts and event-triggers for a prediction that strongly affects the risk of clinician fatigue caused by false positives. Building on this, we apply four different framing structures to the same generic dataset, using a sepsis risk prediction model as an example, and evaluate how framing affects model performance and learning. Our results show that an apparently good model with strong evaluation results in both discrimination and calibration is not necessarily clinically usable. Therefore, it is important to assess the results of objective evaluations within the context of more subjective evaluations of how a model is framed.Simon Meyer LauritsenBo ThiessonMarianne Johansson JørgensenAnders Hammerich RiisUlrick Skipper EspelundJesper Bo WeileJeppe LangeNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Computer applications to medicine. Medical informatics
R858-859.7
spellingShingle Computer applications to medicine. Medical informatics
R858-859.7
Simon Meyer Lauritsen
Bo Thiesson
Marianne Johansson Jørgensen
Anders Hammerich Riis
Ulrick Skipper Espelund
Jesper Bo Weile
Jeppe Lange
The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
description Abstract Problem framing is critical to developing risk prediction models because all subsequent development work and evaluation takes place within the context of how a problem has been framed and explicit documentation of framing choices makes it easier to compare evaluation metrics between published studies. In this work, we introduce the basic concepts of framing, including prediction windows, observation windows, window shifts and event-triggers for a prediction that strongly affects the risk of clinician fatigue caused by false positives. Building on this, we apply four different framing structures to the same generic dataset, using a sepsis risk prediction model as an example, and evaluate how framing affects model performance and learning. Our results show that an apparently good model with strong evaluation results in both discrimination and calibration is not necessarily clinically usable. Therefore, it is important to assess the results of objective evaluations within the context of more subjective evaluations of how a model is framed.
format article
author Simon Meyer Lauritsen
Bo Thiesson
Marianne Johansson Jørgensen
Anders Hammerich Riis
Ulrick Skipper Espelund
Jesper Bo Weile
Jeppe Lange
author_facet Simon Meyer Lauritsen
Bo Thiesson
Marianne Johansson Jørgensen
Anders Hammerich Riis
Ulrick Skipper Espelund
Jesper Bo Weile
Jeppe Lange
author_sort Simon Meyer Lauritsen
title The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
title_short The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
title_full The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
title_fullStr The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
title_full_unstemmed The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
title_sort framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/951bd4e1777041f6af156aa4d5aa40ac
work_keys_str_mv AT simonmeyerlauritsen theframingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT bothiesson theframingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT mariannejohanssonjørgensen theframingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT andershammerichriis theframingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT ulrickskipperespelund theframingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT jesperboweile theframingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT jeppelange theframingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT simonmeyerlauritsen framingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT bothiesson framingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT mariannejohanssonjørgensen framingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT andershammerichriis framingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT ulrickskipperespelund framingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT jesperboweile framingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
AT jeppelange framingofmachinelearningriskpredictionmodelsillustratedbyevaluationofsepsisingeneralwards
_version_ 1718419259966619648