The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
Abstract Problem framing is critical to developing risk prediction models because all subsequent development work and evaluation takes place within the context of how a problem has been framed and explicit documentation of framing choices makes it easier to compare evaluation metrics between publish...
Guardado en:
Autores principales: | Simon Meyer Lauritsen, Bo Thiesson, Marianne Johansson Jørgensen, Anders Hammerich Riis, Ulrick Skipper Espelund, Jesper Bo Weile, Jeppe Lange |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/951bd4e1777041f6af156aa4d5aa40ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explainable artificial intelligence model to predict acute critical illness from electronic health records
por: Simon Meyer Lauritsen, et al.
Publicado: (2020) -
Four consecutive yearly point-prevalence studies in Wales indicate lack of improvement in sepsis care on the wards
por: Maja Kopczynska, et al.
Publicado: (2021) -
Building Competitive Advantages Within the Frames of Different Approaches to Competitiveness Management (illustrated by the company ‘Belgorod Plant RITM’)
por: V. S. Skrug
Publicado: (2021) -
First observation of direct methane emission to the atmosphere from the subglacial domain of the Greenland Ice Sheet
por: Jesper Riis Christiansen, et al.
Publicado: (2018) -
Statistical analysis plan for the Steppedwedge Cluster Randomized trial of Electronic Early Notification of sepsis in hospitalized ward patients (SCREEN)
por: Yaseen M. Arabi, et al.
Publicado: (2021)