Complex multitask compressive sensing using Laplace priors
Abstract Most existing Bayesian compressive sensing (BCS) algorithms are developed in real numbers. This results in many difficulties in applying BCS to solve complex‐valued problems. To overcome this limitation, this letter extends the existing real‐valued BCS framework to the complex‐valued BCS fr...
Guardado en:
Autores principales: | Qilei Zhang, Zhen Dong, Yongsheng Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/951be62ebbdc4752b8bb1213bbebddf8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A novel DOA estimation method for uncorrelated and coherent signals via compressed sensing in sparse arrays
por: Peng Han, et al.
Publicado: (2021) -
Symmetric mean and directional contour pattern for texture classification
por: Yongsheng Dong, et al.
Publicado: (2021) -
Point Cloud Registration Algorithm Based on Laplace Mixture Model
por: Qin Shu, et al.
Publicado: (2021) -
Coherent integration and detection algorithm for hypersonic target based on modified pulse compression and Keystone transform
por: Wenchao Yu, et al.
Publicado: (2021) -
3D complex envelope leapfrog ADI‐FDTD algorithm
por: Yunyang Dong, et al.
Publicado: (2021)