An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
The Canny algorithm is widely used for edge detection. It requires the adjustment of parameters to obtain a high-quality edge image. Several methods can select them automatically, but they cannot cover the diverse variations on an image. In the Canny algorithm, we need to set values of three paramet...
Guardado en:
Autores principales: | Keong-Hun Choi, Jong-Eun Ha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9523fb1722094894875e95f4a04e927e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Home Energy Management Algorithm Based on Deep Reinforcement Learning Using Multistep Prediction
por: Naoki Kodama, et al.
Publicado: (2021) -
Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
por: Abdikarim Mohamed Ibrahim, et al.
Publicado: (2021) -
Spiking Neural Network Discovers Energy-Efficient Hexapod Motion in Deep Reinforcement Learning
por: Katsumi Naya, et al.
Publicado: (2021) -
Practical Algorithmic Trading Using State Representation Learning and Imitative Reinforcement Learning
por: Deog-Yeong Park, et al.
Publicado: (2021) -
Autonomous 3-D UAV Localization Using Cellular Networks: Deep Supervised Learning Versus Reinforcement Learning Approaches
por: Ghada Afifi, et al.
Publicado: (2021)