Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences
Obtaining metabolomic data from microbial communities can be costly and difficult, whereas many microbial community sequence datasets are already available. Here Mallick et al. describe a computational approach to predict metabolic features from microbial DNA sequencing information.
Guardado en:
Autores principales: | Himel Mallick, Eric A. Franzosa, Lauren J. Mclver, Soumya Banerjee, Alexandra Sirota-Madi, Aleksandar D. Kostic, Clary B. Clish, Hera Vlamakis, Ramnik J. Xavier, Curtis Huttenhower |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/953511452d6847d9a93027a58764b2b1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics
por: Vittorio Tracanna, et al.
Publicado: (2021) -
Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators
por: Braden T. Tierney, et al.
Publicado: (2021) -
A statistical model for describing and simulating microbial community profiles.
por: Siyuan Ma, et al.
Publicado: (2021) -
A Community Effort: Combining Functional Amplicon Sequencing and Metagenomics Reveals Potential Biosynthetic Gene Clusters Associated with Protective Phenotypes in Rhizosphere Microbiomes
por: Jaclyn M. Winter
Publicado: (2021) -
Fluoride Depletes Acidogenic Taxa in Oral but Not Gut Microbial Communities in Mice
por: Koji Yasuda, et al.
Publicado: (2017)