Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences
Obtaining metabolomic data from microbial communities can be costly and difficult, whereas many microbial community sequence datasets are already available. Here Mallick et al. describe a computational approach to predict metabolic features from microbial DNA sequencing information.
Enregistré dans:
Auteurs principaux: | Himel Mallick, Eric A. Franzosa, Lauren J. Mclver, Soumya Banerjee, Alexandra Sirota-Madi, Aleksandar D. Kostic, Clary B. Clish, Hera Vlamakis, Ramnik J. Xavier, Curtis Huttenhower |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/953511452d6847d9a93027a58764b2b1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics
par: Vittorio Tracanna, et autres
Publié: (2021) -
Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators
par: Braden T. Tierney, et autres
Publié: (2021) -
A statistical model for describing and simulating microbial community profiles.
par: Siyuan Ma, et autres
Publié: (2021) -
A Community Effort: Combining Functional Amplicon Sequencing and Metagenomics Reveals Potential Biosynthetic Gene Clusters Associated with Protective Phenotypes in Rhizosphere Microbiomes
par: Jaclyn M. Winter
Publié: (2021) -
Fluoride Depletes Acidogenic Taxa in Oral but Not Gut Microbial Communities in Mice
par: Koji Yasuda, et autres
Publié: (2017)