A Temporal Boosted YOLO-Based Model for Birds Detection around Wind Farms
Object detection for sky surveillance is a challenging problem due to having small objects in a large volume and a constantly changing background which requires high resolution frames. For example, detecting flying birds in wind farms to prevent their collision with the wind turbines. This paper pro...
Guardado en:
Autores principales: | Hiba Alqaysi, Igor Fedorov, Faisal Z. Qureshi, Mattias O’Nils |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9539677c7e0a466589e586a994ce1c84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Latent label mining for group activity recognition in basketball videos
por: Lifang Wu, et al.
Publicado: (2021) -
Cross‐modal semantic correlation learning by Bi‐CNN network
por: Chaoyi Wang, et al.
Publicado: (2021) -
Multi‐dimensional weighted cross‐attention network in crowded scenes
por: Yefan Xie, et al.
Publicado: (2021) -
Real‐time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector
por: Wei Jia, et al.
Publicado: (2021) -
MFP‐Net: Multi‐scale feature pyramid network for crowd counting
por: Tao Lei, et al.
Publicado: (2021)