Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.

The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrea Seper, Ava Hosseinzadeh, Gregor Gorkiewicz, Sabine Lichtenegger, Sandro Roier, Deborah R Leitner, Marc Röhm, Andreas Grutsch, Joachim Reidl, Constantin F Urban, Stefan Schild
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
Acceso en línea:https://doaj.org/article/953e54e00cba46ac81a0e83b8f35756e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:953e54e00cba46ac81a0e83b8f35756e
record_format dspace
spelling oai:doaj.org-article:953e54e00cba46ac81a0e83b8f35756e2021-11-18T06:07:40ZVibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.1553-73661553-737410.1371/journal.ppat.1003614https://doaj.org/article/953e54e00cba46ac81a0e83b8f35756e2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24039581/pdf/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.Andrea SeperAva HosseinzadehGregor GorkiewiczSabine LichteneggerSandro RoierDeborah R LeitnerMarc RöhmAndreas GrutschJoachim ReidlConstantin F UrbanStefan SchildPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 9, Iss 9, p e1003614 (2013)
institution DOAJ
collection DOAJ
language EN
topic Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
spellingShingle Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
Andrea Seper
Ava Hosseinzadeh
Gregor Gorkiewicz
Sabine Lichtenegger
Sandro Roier
Deborah R Leitner
Marc Röhm
Andreas Grutsch
Joachim Reidl
Constantin F Urban
Stefan Schild
Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.
description The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.
format article
author Andrea Seper
Ava Hosseinzadeh
Gregor Gorkiewicz
Sabine Lichtenegger
Sandro Roier
Deborah R Leitner
Marc Röhm
Andreas Grutsch
Joachim Reidl
Constantin F Urban
Stefan Schild
author_facet Andrea Seper
Ava Hosseinzadeh
Gregor Gorkiewicz
Sabine Lichtenegger
Sandro Roier
Deborah R Leitner
Marc Röhm
Andreas Grutsch
Joachim Reidl
Constantin F Urban
Stefan Schild
author_sort Andrea Seper
title Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.
title_short Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.
title_full Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.
title_fullStr Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.
title_full_unstemmed Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.
title_sort vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/953e54e00cba46ac81a0e83b8f35756e
work_keys_str_mv AT andreaseper vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT avahosseinzadeh vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT gregorgorkiewicz vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT sabinelichtenegger vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT sandroroier vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT deborahrleitner vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT marcrohm vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT andreasgrutsch vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT joachimreidl vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT constantinfurban vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
AT stefanschild vibriocholeraeevadesneutrophilextracellulartrapsbytheactivityoftwoextracellularnucleases
_version_ 1718424554188046336