A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection

Few-shot learning (FSL) is a core topic in the domain of machine learning (ML), in which the focus is on the use of small datasets to train the model. In recent years, there have been many important data-driven ML applications for intrusion detection. Despite these great achievements, however, gathe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ruixue Duan, Dan Li, Qiang Tong, Tao Yang, Xiaotong Liu, Xiulei Liu
Formato: article
Lenguaje:EN
Publicado: Hindawi-Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/955920edfe3a4341be3141e926617704
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:955920edfe3a4341be3141e926617704
record_format dspace
spelling oai:doaj.org-article:955920edfe3a4341be3141e9266177042021-11-08T02:37:24ZA Survey of Few-Shot Learning: An Effective Method for Intrusion Detection1939-012210.1155/2021/4259629https://doaj.org/article/955920edfe3a4341be3141e9266177042021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4259629https://doaj.org/toc/1939-0122Few-shot learning (FSL) is a core topic in the domain of machine learning (ML), in which the focus is on the use of small datasets to train the model. In recent years, there have been many important data-driven ML applications for intrusion detection. Despite these great achievements, however, gathering a large amount of reliable data remains expensive and time-consuming, or even impossible. In this regard, FSL has been shown to have advantages in terms of processing small, abnormal data samples in the huge application space of intrusion detection. FSL can improve ML for scarce data at three levels: the data, the model, and the algorithm levels. Previous knowledge plays an important role in all three approaches. Many promising methods such as data enrichment, the graph neural network model, and multitask learning have also been developed. In this paper, we present a comprehensive review of the latest research progress in the area of FSL. We first introduce the theoretical background to ML and FSL and then describe the general features, advantages, and main methods of FSL. FSL methods such as embedded learning, multitask learning, and generative models are applied to intrusion detection to improve the detection accuracy effectively. Then, the application of FSL to intrusion detection is reviewed in detail, including enriching the dataset by extracting intermediate features, using graph embedding and meta-learning methods to improve the model. Finally, the difficulties of this approach and its prospects for development in the field of intrusion detection are identified based on the previous discussion.Ruixue DuanDan LiQiang TongTao YangXiaotong LiuXiulei LiuHindawi-WileyarticleTechnology (General)T1-995Science (General)Q1-390ENSecurity and Communication Networks, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Technology (General)
T1-995
Science (General)
Q1-390
spellingShingle Technology (General)
T1-995
Science (General)
Q1-390
Ruixue Duan
Dan Li
Qiang Tong
Tao Yang
Xiaotong Liu
Xiulei Liu
A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
description Few-shot learning (FSL) is a core topic in the domain of machine learning (ML), in which the focus is on the use of small datasets to train the model. In recent years, there have been many important data-driven ML applications for intrusion detection. Despite these great achievements, however, gathering a large amount of reliable data remains expensive and time-consuming, or even impossible. In this regard, FSL has been shown to have advantages in terms of processing small, abnormal data samples in the huge application space of intrusion detection. FSL can improve ML for scarce data at three levels: the data, the model, and the algorithm levels. Previous knowledge plays an important role in all three approaches. Many promising methods such as data enrichment, the graph neural network model, and multitask learning have also been developed. In this paper, we present a comprehensive review of the latest research progress in the area of FSL. We first introduce the theoretical background to ML and FSL and then describe the general features, advantages, and main methods of FSL. FSL methods such as embedded learning, multitask learning, and generative models are applied to intrusion detection to improve the detection accuracy effectively. Then, the application of FSL to intrusion detection is reviewed in detail, including enriching the dataset by extracting intermediate features, using graph embedding and meta-learning methods to improve the model. Finally, the difficulties of this approach and its prospects for development in the field of intrusion detection are identified based on the previous discussion.
format article
author Ruixue Duan
Dan Li
Qiang Tong
Tao Yang
Xiaotong Liu
Xiulei Liu
author_facet Ruixue Duan
Dan Li
Qiang Tong
Tao Yang
Xiaotong Liu
Xiulei Liu
author_sort Ruixue Duan
title A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
title_short A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
title_full A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
title_fullStr A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
title_full_unstemmed A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
title_sort survey of few-shot learning: an effective method for intrusion detection
publisher Hindawi-Wiley
publishDate 2021
url https://doaj.org/article/955920edfe3a4341be3141e926617704
work_keys_str_mv AT ruixueduan asurveyoffewshotlearninganeffectivemethodforintrusiondetection
AT danli asurveyoffewshotlearninganeffectivemethodforintrusiondetection
AT qiangtong asurveyoffewshotlearninganeffectivemethodforintrusiondetection
AT taoyang asurveyoffewshotlearninganeffectivemethodforintrusiondetection
AT xiaotongliu asurveyoffewshotlearninganeffectivemethodforintrusiondetection
AT xiuleiliu asurveyoffewshotlearninganeffectivemethodforintrusiondetection
AT ruixueduan surveyoffewshotlearninganeffectivemethodforintrusiondetection
AT danli surveyoffewshotlearninganeffectivemethodforintrusiondetection
AT qiangtong surveyoffewshotlearninganeffectivemethodforintrusiondetection
AT taoyang surveyoffewshotlearninganeffectivemethodforintrusiondetection
AT xiaotongliu surveyoffewshotlearninganeffectivemethodforintrusiondetection
AT xiuleiliu surveyoffewshotlearninganeffectivemethodforintrusiondetection
_version_ 1718443023453388800