A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
Few-shot learning (FSL) is a core topic in the domain of machine learning (ML), in which the focus is on the use of small datasets to train the model. In recent years, there have been many important data-driven ML applications for intrusion detection. Despite these great achievements, however, gathe...
Guardado en:
Autores principales: | Ruixue Duan, Dan Li, Qiang Tong, Tao Yang, Xiaotong Liu, Xiulei Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/955920edfe3a4341be3141e926617704 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
por: Zengri Zeng, et al.
Publicado: (2021) -
Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning
por: Zhendong Wang, et al.
Publicado: (2021) -
Congestion Attack Detection in Intelligent Traffic Signal System: Combining Empirical and Analytical Methods
por: Yingxiao Xiang, et al.
Publicado: (2021) -
Few-Shot Object Detection via Sample Processing
por: Honghui Xu, et al.
Publicado: (2021) -
Intrusion Detection Algorithm and Simulation of Wireless Sensor Network under Internet Environment
por: Jing Jin
Publicado: (2021)