Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?
<p>Issues related to large uncertainty and parameter equifinality have posed big challenges for hydrological modeling in cold regions where runoff generation processes are particularly complicated. Tracer-aided hydrological models that integrate the transportation and fractionation processes o...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/957263df35884e69b697f9bb713b6e6c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:957263df35884e69b697f9bb713b6e6c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:957263df35884e69b697f9bb713b6e6c2021-12-03T12:04:10ZCan we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?10.5194/hess-25-6151-20211027-56061607-7938https://doaj.org/article/957263df35884e69b697f9bb713b6e6c2021-12-01T00:00:00Zhttps://hess.copernicus.org/articles/25/6151/2021/hess-25-6151-2021.pdfhttps://doaj.org/toc/1027-5606https://doaj.org/toc/1607-7938<p>Issues related to large uncertainty and parameter equifinality have posed big challenges for hydrological modeling in cold regions where runoff generation processes are particularly complicated. Tracer-aided hydrological models that integrate the transportation and fractionation processes of water stable isotope are increasingly used to constrain parameter uncertainty and refine the parameterizations of specific hydrological processes in cold regions. However, the common unavailability of site sampling of spatially distributed precipitation isotopes hampers the practical applications of tracer-aided models in large-scale catchments. This study, taking the precipitation isotope data (isotopes-incorporated global spectral model – isoGSM) derived from the isotopic general circulation models (iGCMs) as an example, explored its utility in driving a tracer-aided hydrological model in the Yarlung Tsangpo River basin (YTR; around <span class="inline-formula">2×10<sup>5</sup></span> km<span class="inline-formula"><sup>2</sup></span>, with a mean elevation of 4875 m) on the Tibetan Plateau (TP). The isoGSM product was firstly corrected based on the biases between gridded precipitation isotope estimates and the limited site sampling measurements. Model simulations driven by the corrected isoGSM data were then compared with those forced by spatially interpolated precipitation isotopes from site sampling measurements. Our results indicated that (1) spatial precipitation isotopes derived from the isoGSM data helped to reduce modeling uncertainty and improve parameter identifiability in a large mountainous catchment on the TP, compared to a calibration method using discharge and snow cover area fraction without any information on water isotopes; (2) model parameters estimated by the corrected isoGSM data presented higher transferability to nested subbasins and produced higher model performance in the validation period than that estimated by the interpolated precipitation isotope data from site sampling measurements; (3) model calibration forced by the corrected isoGSM data successfully rejected parameter sets that overestimated glacier melt contribution and gave more reliable contributions of runoff components, indicating the corrected isoGSM data served as a better choice to provide informative spatial precipitation isotope than the interpolated data from site sampling measurements at the macro scale. This work suggested plausible utility of combining isoGSM data with measurements, even from a sparse sampling network, in improving hydrological modeling in large high mountain basins.</p>Y. NanZ. HeF. TianZ. WeiL. TianCopernicus PublicationsarticleTechnologyTEnvironmental technology. Sanitary engineeringTD1-1066Geography. Anthropology. RecreationGEnvironmental sciencesGE1-350ENHydrology and Earth System Sciences, Vol 25, Pp 6151-6172 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 |
spellingShingle |
Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 Y. Nan Z. He F. Tian Z. Wei L. Tian Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? |
description |
<p>Issues related to large uncertainty and parameter equifinality have posed
big challenges for hydrological modeling in cold regions where runoff
generation processes are particularly complicated. Tracer-aided hydrological models that integrate the transportation and fractionation processes of water stable isotope are increasingly used to constrain parameter uncertainty and refine the parameterizations of specific hydrological processes in cold regions. However, the common unavailability of site sampling of spatially distributed precipitation isotopes hampers the practical applications of tracer-aided models in large-scale catchments. This study, taking the precipitation isotope data (isotopes-incorporated global spectral model – isoGSM) derived from the isotopic general circulation models (iGCMs) as an example, explored its utility in driving a tracer-aided hydrological model in the Yarlung Tsangpo River basin (YTR; around <span class="inline-formula">2×10<sup>5</sup></span> km<span class="inline-formula"><sup>2</sup></span>, with a mean elevation of 4875 m) on the Tibetan Plateau (TP). The isoGSM product was firstly corrected based on the biases between gridded precipitation isotope estimates and the limited site sampling measurements. Model simulations driven by the corrected isoGSM data were then compared with those forced by spatially interpolated precipitation isotopes from site sampling measurements. Our results indicated that (1) spatial precipitation isotopes derived from the isoGSM data helped to reduce
modeling uncertainty and improve parameter identifiability in a large
mountainous catchment on the TP, compared to a calibration method using discharge and snow cover area fraction without any information on water
isotopes; (2) model parameters estimated by the corrected isoGSM data presented higher transferability to nested subbasins and produced higher model performance in the validation period than that estimated by the interpolated precipitation isotope data from site sampling measurements; (3) model calibration forced by the corrected isoGSM data successfully rejected parameter sets that overestimated glacier melt contribution and gave more reliable contributions of runoff components, indicating the corrected isoGSM data served as a better choice to provide informative spatial precipitation isotope than the interpolated data from site sampling measurements at the macro scale. This work suggested plausible utility of combining isoGSM data with measurements, even from a sparse sampling network, in improving hydrological modeling in large high mountain basins.</p> |
format |
article |
author |
Y. Nan Z. He F. Tian Z. Wei L. Tian |
author_facet |
Y. Nan Z. He F. Tian Z. Wei L. Tian |
author_sort |
Y. Nan |
title |
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? |
title_short |
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? |
title_full |
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? |
title_fullStr |
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? |
title_full_unstemmed |
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? |
title_sort |
can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the tibetan plateau? |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doaj.org/article/957263df35884e69b697f9bb713b6e6c |
work_keys_str_mv |
AT ynan canweuseprecipitationisotopeoutputsofisotopicgeneralcirculationmodelstoimprovehydrologicalmodelinginlargemountainouscatchmentsonthetibetanplateau AT zhe canweuseprecipitationisotopeoutputsofisotopicgeneralcirculationmodelstoimprovehydrologicalmodelinginlargemountainouscatchmentsonthetibetanplateau AT ftian canweuseprecipitationisotopeoutputsofisotopicgeneralcirculationmodelstoimprovehydrologicalmodelinginlargemountainouscatchmentsonthetibetanplateau AT zwei canweuseprecipitationisotopeoutputsofisotopicgeneralcirculationmodelstoimprovehydrologicalmodelinginlargemountainouscatchmentsonthetibetanplateau AT ltian canweuseprecipitationisotopeoutputsofisotopicgeneralcirculationmodelstoimprovehydrologicalmodelinginlargemountainouscatchmentsonthetibetanplateau |
_version_ |
1718373282965618688 |